Voltus Insight AI 在高性能CPU核物理實現上的全流程應用
電子技術應用
姜姝1,李嶧2,陳俊杰3
1.上海云豹創芯智能科技有限公司;2.深圳云豹智能有限公司;3.西安云豹創芯智能科技有限公司
摘要: 隨著高性能計算芯片設計向先進工藝節點演進,芯片集成度的飛躍式增長使得晶體管密度突破每平方毫米數億門級,導致電源分配網絡(PDN)的金屬線寬持續收窄,通孔電阻呈非線性上升,加上高密度邏輯單元在吉赫茲級時鐘頻率下的同步翻轉行為,顯著加劇了電壓降(IR Drop)風險。基于Cadence Voltus Insight AI feature,提出了一種針對高性能CPU核的物理實現的全流程電壓降優化方案,通過整合AI驅動的IR感知布局(IR-Aware Placement)、電源網絡加強(reinforce_pg)及Watch Box修復技術,能夠動態預測電源網格的電流分布熱點,對高功耗邏輯單元進行擺放優化,實現IR 熱點區域的提前預防和高效修復。結果表明,在相同條件下,不僅能節約時間,提高效率,電壓降修復率也從過去的66%顯著提升至96%,同時避免了時序(Timing)與設計規則(DRC)的惡化。
中圖分類號:TN402 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.250803
中文引用格式: 姜姝,李嶧,陳俊杰. Voltus Insight AI 在高性能CPU核物理實現上的全流程應用[J]. 電子技術應用,2025,51(8):16-21.
英文引用格式: Jiang Shu,Li Yi,Chen Junjie. Application of Voltus Insight AI in physical implementation of high-performance CPU cores[J]. Application of Electronic Technique,2025,51(8):16-21.
中文引用格式: 姜姝,李嶧,陳俊杰. Voltus Insight AI 在高性能CPU核物理實現上的全流程應用[J]. 電子技術應用,2025,51(8):16-21.
英文引用格式: Jiang Shu,Li Yi,Chen Junjie. Application of Voltus Insight AI in physical implementation of high-performance CPU cores[J]. Application of Electronic Technique,2025,51(8):16-21.
Application of Voltus Insight AI in physical implementation of high-performance CPU cores
Jiang Shu1,Li Yi2,Chen Junjie3
1.Jaguar Microsystems;2.Jaguar Microsystems;3.Jaguar Microsystems
Abstract: With the evolution of high-performance computing chip design toward advanced process nodes, the exponential growth in chip integration has led transistor density to surpass hundreds of millions of gates per square millimeter. This has resulted in the continuous narrowing of metal line widths in Power Distribution Networks (PDNs), a nonlinear rise in via resistance, and synchronized switching behavior of high-density logic units under GHz-level clock frequencies, significantly exacerbating IR Drop risks. Leveraging the Cadence Voltus Insight AI feature, this paper proposes a comprehensive voltage drop optimization solution for the physical implementation of high-performance CPU cores. By integrating AI-driven IR-Aware placement, reinforce_pg, and Watch Box repair technologies, the solution dynamically predicts current distribution hotspots in PDNs, optimizes the placement of high-power logic units, and enables proactive prevention and efficient mitigation of IR hotspots. Experimental results demonstrate that, under identical conditions, the approach not only saves time and improves efficiency but also elevates the IR Drop repair rate from 66% to 96%, while avoiding degradation in timing performance and Design Rule Check (DRC).
Key words : chip design;Insight AI;IR-Aware;IR Drop fixing
引言
隨著高性能計算芯片的集成度呈現指數級增長,晶體管密度已突破每平方毫米數億門級,為算力提升開辟了全新維度。然而,這種物理尺度的極致壓縮與性能的追求,給芯片設計帶來了新的挑戰。其中,電壓降(IR Drop)問題尤為突出——電源分配網絡(Power Distribution Network, PDN)的金屬線寬持續收窄,通孔電阻隨高密度互連呈非線性攀升,疊加高密度邏輯單元在吉赫茲級時鐘頻率下的同步翻轉行為,導致局部電流密度激增,顯著加劇了IR Drop風險。當電源電壓無法滿足晶體管閾值要求時,輕則引發時序偏差與性能降級,重則導致功能失效,成為制約先進工藝芯片可靠性與能效的核心瓶頸 [1-4]。本文基于Cadence實現工具Innovus和 Voltus Insight AI feature,提出了一種針對高性能CPU核的物理實現的全流程電壓降優化方案,通過整合AI驅動的IR感知布局(IR-Aware Placement)、電源網絡加強(reinforce_pg)及Watch Box修復技術,動態預測電源網格的電流分布熱點,對高功耗邏輯單元進行擺放優化,實現IR 熱點區域的提前預防和高效修復。
本文詳細內容請下載:
http://www.jysgc.com/resource/share/2000006622
作者信息:
姜姝1,李嶧2,陳俊杰3
(1.上海云豹創芯智能科技有限公司,上海 201210;
2.深圳云豹智能有限公司,廣東 深圳 518057;
3.西安云豹創芯智能科技有限公司,陜西 西安 710076)
此內容為AET網站原創,未經授權禁止轉載。