《電子技術應用》
您所在的位置:首頁 > 可編程邏輯 > 設計應用 > 基于FPGA的TMR電路跨時鐘域同步技術
基于FPGA的TMR電路跨時鐘域同步技術
2017年電子技術應用第1期
賴曉敏,泮朋軍,羅喚霖,孫 聰,朱新忠
上海航天電子技術研究所,上海201109
摘要: 三模冗余(TMR)電路中的跨時鐘域信號可能會受到來自信號偏差和空間單粒子效應(SEE)的組合影響。通過建立數學模型,對這兩個問題進行分析和量化。最后針對長脈寬和短脈寬源信號的不同情況,提出了相應的解決方案。
中圖分類號: TN919.4
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.2017.01.008
中文引用格式: 賴曉敏,泮朋軍,羅喚霖,等. 基于FPGA的TMR電路跨時鐘域同步技術[J].電子技術應用,2017,43(1):32-34,38.
英文引用格式: Lai Xiaomin,Pan Pengjun,Luo Huanlin,et al. Synchronization technology for TMR circuits across clock domains based on FPGA[J].Application of Electronic Technique,2017,43(1):32-34,38.
Synchronization technology for TMR circuits across clock domains based on FPGA
Lai Xiaomin,Pan Pengjun,Luo Huanlin,Sun Cong,Zhu Xinzong
Shanghai Aerospace Electronic Technology Institute,Shanghai 201109,China
Abstract: The cross-clock domain signal of triple modular redundant(TMR) circuits may be influenced by the combination of signal deviation and single particle effects in space(SEE). This article will analyze and quantify the two issues through mathematic models , and supply corresponding solutions according the difference between long and short pulse width signals.
Key words : triple modular redundancy;asynchronous signal;signal deviation;combined effects;sampling uncertainty

0 引言

    基于SRAM型的現場可編程門陣列(FPGA)目前在衛星電子系統中被大量應用。但由于SRAM型FPGA工藝特點,其功能的實現都是受內部靜態RAM單元控制的,因此容易受到空間單粒子翻轉效應(SEU)的影響。三模冗余(TMR)技術能有效降低FPGA電路的單粒子翻轉效應。

    如果對三重傳輸信號經過異步時鐘邊界之后的采樣信號不作處理,則還有可能產生問題。本文針對在應用電路出現以下現象:亞穩態、異步采樣不確定性和SEU,進行了量化和分析,同時對三重時鐘域異步采樣的不確定性的影響進行建模,最后對同步器進行了優化設計。

1 信號復制和采樣的不確定性

    在TMR電路中,除表決電路外,每個模塊和信號都是三重復制,這有可能會帶來異步采樣不確定的問題。3個相同的信號在異步采樣模式下,可能會在接收時鐘域上不同的時鐘周期到達。圖1為三重信號經過不同時鐘域的傳輸。在理想的情況下,接收到的信號Sigrcv_A、Sigrcv_B和Sigrcv_C在接收端時鐘域將是一致的。然而,在非理想的情況下,假設信號在時鐘上升沿采樣,如圖2所示,由于存在布線延遲差異,采樣后的信號可能無法保持一致[1]

wdz6-t1.gif

wdz6-t2.gif

    為了估算三重信號傳輸的可靠性,本文將圖1簡化為圖3所示的電路。

wdz6-t3.gif

    源信號Sig_s經三重復制,從Clks時鐘域被傳送到時鐘域Clkr,在傳輸網絡中的延遲時間分別為TdelayA、TdelayB、TdelayC(假設觸發器的建立和保持時間為0 ns)。圖4為采樣不確定時的時序波形。

wdz6-t4.gif

    由于三組信號Sig_A、Sig_B、Sig_C的傳輸延時不一致,因此到達時間也不一致。Sig_A、Sig_B在Clkr時鐘上升沿前到達,而Sig_C由于延遲較大,落后于Clkr時鐘上升沿,因此在這個Clkr時鐘周期內無法被采樣,由此產生了采樣的不確定性風險。

    若Clkr時鐘上升沿落在最大延遲和最小延遲的窗口(即判決窗口Tskew=TdelayC-TdelayA)之外,那么采樣不確定性將不會發生。若接收端的時鐘比發送端的時鐘要慢,Clkr上升沿落在Clks周期外的概率是:p1=Fr/Fs;反之,Clkr上升沿落在Clks周期內的概率為在判決窗口Tskew除以發送端的時鐘周期p2=Tskew/Ts。因此,未經同步的三組脈沖信號發送到接收端的概率為兩組概率的乘積:P1=p1×p2=(Fr/Fs)×(Tskew/Ts)=Fr×Tskew。由于在Clks周期內輸入信號變化的概率可表示為Fd/Fs。因此,3個觸發器的輸出不在同一時鐘周期內的概率可表示為:P=P1×(Fd/Fs)=Tskew×(Fr×Fd/Fs)。

    因此,降低概率P便降低了TMR判決出錯的概率。可以看出,減小判決窗口Tskew、降低發送端信號變化與時鐘頻率比值Fd/Fs以及降低接收端時鐘頻率Fr均可以達到類似效果。

2 采樣不確定性及信號偏差的效應

    采樣電路中接收的三重信號脈沖寬度足夠長時,時序圖如圖5所示。

wdz6-t5.gif

    雖然因互連延遲,3個相同的信號在接收端的時鐘域里并不完全一樣。如Sig_A和Sig_B在第一個時鐘周期里被采樣成‘1’,Sig_C被采樣成‘0’。由于信號寬度足夠長,在后兩個時鐘周期內三組信號可以被正確的采樣,不影響后續處理。因此,如果源信號具有足夠長的脈沖寬度,且判決器被正確放置在源信號的有效周期內,源信號的分組偏差不會導致后端信號的處理錯誤。

    信號脈沖寬度不滿足要求時,信號偏差將影響采樣結果。三組源信號的脈沖寬度是與接收端的時鐘寬度Trcv一致,在沒有信號偏差的情況不會產生錯誤,如圖6所示。

wdz6-t6.gif

    一旦某一組信號存在偏差,在接收端的采樣將會出現偏差,如圖7所示,而這種偏差具有一定的脆弱性,用判決器進行糾正時有可能出現誤判。如圖8所示,其上半部分為有信號偏差但沒有SEU的情況,盡管情形2和情形3會導致接收端接收的信號不一致,但判決器可以矯正這種偏差;在下半部分圖中,Sig_A受到SEU的影響變為長‘0’,在情形1和情形3中沒有發生錯誤,因為Sig_B、Sig_C 沒有采樣不一致的情況發生,而情形2由于SEU和Sig_B、Sig_C存在偏差,兩種因素同時作用,從而導致判決錯誤。

wdz6-t7.gif

wdz6-t8.gif

    為了解決圖8中情形2的問題,源信號脈沖寬度須滿足Tpw≥Tskew+Trcv,如圖9所示。這種情況下,即使3個發送信號之間存在延遲,均可以在中間一個時鐘周期被正確地采樣,保證判決器不會發生錯誤。

wdz6-t9.gif

3 解決方案

    為了解決圖8中情形2中出現的錯誤,通用的解決思路如下:首先盡量減小3組源信號的不同步輸出延時,使Tskew盡量小,可通過FPGA的布線約束進行自動布線或手動布線來達到理想效果;其次,在接收端的時鐘域中,對3組源信號進行同步處理,保證發送信號在接收端時鐘Clkr的一個時鐘周期內被同時采樣;而后通過判決器,在出現SEU時對同步器輸出信號進行表決,如圖10所示。

wdz6-t10.gif

3.1 長脈寬的源信號

    由圖8可以看出,當源信號脈沖寬度Tpw≥Tskew+Trcv時,即使發生信號偏差也可以被接收端正確采樣。在此情況下,同步器可以采用最經典的兩級觸發電路。整個系統的設計圖如圖11所示。其中判決器的輸出信號寬度可能是一個時鐘周期,也可能維持多個時鐘周期。

wdz6-t11.gif

3.2 短脈寬的源信號

    當源信號脈沖寬度Tpw<Tskew+Trcv時,須對源信號脈沖寬度進行擴展,以便判決器能正確采樣。因此,同步器電路須進行適應性修改,示例電路如圖12所示,其時序波形如圖13所示。

wdz6-t12.gif

wdz6-t13.gif

4 結束語

    本文討論了TMR電路在多時鐘域系統可能受到的影響(亞穩態、異步采樣錯誤和單粒子翻轉),對這3種影響的綜合效應進行了量化分析。通過降低復制輸入信號的不同步延時,以及降低接收端時鐘頻率,可以有效減小判決出錯的概率。針對存在SEU及信號偏差的系統,對于不同脈沖長度的源信號,提出了兩種同步器設計方案,較好地解決三模冗余情況下跨時鐘域信號的問題。此設計在航天、航空數據處理系統以及重要的數字冗余處理系統中具有較為廣泛的應用背景與現實意義,可用于數據處理器、編碼器等數字基帶單元的FPGA芯片應用中。

參考文獻

[1] KAPSCHITZ T,NEWTON I R.Verifying synchronization in multi-clock domain SoC[Z].HDL,Inc.2004.



作者信息:

賴曉敏,泮朋軍,羅喚霖,孫  聰,朱新忠

(上海航天電子技術研究所,上海201109)

此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
欧美一区二区三区日韩| 蜜桃久久av一区| 91久久国产自产拍夜夜嗨| 亚洲在线免费| 一区二区成人精品 | 999亚洲国产精| 亚洲国产毛片完整版| 久久高清免费观看| 午夜免费在线观看精品视频| 亚洲网站视频| 国产精品99久久久久久久vr| 一本色道久久88亚洲综合88| 亚洲精品黄色| 亚洲欧洲三级| 亚洲日本成人网| 亚洲精品视频免费观看| 亚洲级视频在线观看免费1级| 1024国产精品| 亚洲国产精品激情在线观看| 亚洲第一视频| 亚洲国产精品久久久久婷婷老年| 在线观看日韩精品| 亚洲国内自拍| 亚洲激情视频在线播放| 亚洲精品在线看| 日韩视频三区| 夜夜爽av福利精品导航| 亚洲图色在线| 午夜久久福利| 亚洲国产第一| 亚洲激情亚洲| 日韩一级不卡| 亚洲性感美女99在线| 午夜精品福利视频| 欧美在线视频导航| 久久婷婷色综合| 免费一级欧美片在线播放| 欧美丰满少妇xxxbbb| 欧美日韩国产麻豆| 国产精品久久久久影院亚瑟 | 国产亚洲视频在线观看| 黄色成人在线网址| 亚洲国产精品久久久久婷婷884 | 午夜久久影院| 久久精品女人天堂| 日韩小视频在线观看| 中文一区字幕| 午夜在线电影亚洲一区| 久久精品日产第一区二区| 另类人畜视频在线| 欧美日韩免费观看一区三区| 国产精品日韩一区二区| 狠狠干成人综合网| 亚洲精品网站在线播放gif| 亚洲无线一线二线三线区别av| 午夜欧美大尺度福利影院在线看| 亚洲第一区在线| 一级日韩一区在线观看| 午夜精品久久久久久久久久久久久| 欧美一级黄色录像| 免费在线看成人av| 欧美亚州在线观看| 韩国精品久久久999| 亚洲精品视频二区| 欧美一区二区三区的| 亚洲毛片在线观看.| 香蕉乱码成人久久天堂爱免费| 久热精品在线视频| 欧美性猛交99久久久久99按摩| 国产一区高清视频| 99视频精品全部免费在线| 欧美在线高清视频| 在线亚洲高清视频| 久久午夜精品| 欧美色视频一区| 狠狠88综合久久久久综合网| 一区二区三区国产盗摄| 亚洲国产激情| 亚洲欧美激情视频在线观看一区二区三区 | 正在播放亚洲一区| 久久久久国产免费免费| 欧美日韩直播| 在线免费一区三区| 亚洲自拍啪啪| 亚洲免费观看高清在线观看| 欧美在线3区| 欧美日韩精品久久| 一区二区三区在线高清| 亚洲一区日韩在线| 亚洲最新在线| 久久伊伊香蕉| 国产欧美一区二区视频| 亚洲毛片在线观看.| 亚洲高清色综合| 性久久久久久| 欧美日韩性视频在线| 亚洲成在线观看| 欧美一区二区三区视频| 亚洲免费影院| 欧美日韩美女在线| 亚洲国产欧美一区二区三区同亚洲 | 欧美人与性禽动交情品| 国产专区综合网| 亚洲午夜电影在线观看| 99国产欧美久久久精品| 乱码第一页成人| 国产一区二区三区久久精品| 中文日韩在线视频| 99精品视频一区| 欧美sm重口味系列视频在线观看| 国产视频综合在线| 亚洲男女自偷自拍图片另类| 亚洲视频一区在线| 欧美精品一区二区久久婷婷| 亚洲国产精品久久| 亚洲精品久久久蜜桃| 久久一区二区三区国产精品 | 欧美精品一区二区三区一线天视频| 国产午夜精品视频免费不卡69堂| 亚洲专区一二三| 亚洲欧美中文在线视频| 欧美性猛交视频| 一区二区三区视频在线播放| 在线视频欧美日韩| 欧美日韩国产综合在线| 99国产精品久久久久久久| 99国产精品久久久久久久| 欧美激情一区二区三区 | 亚洲综合欧美| 亚洲欧美在线aaa| 国产精品乱码一区二三区小蝌蚪| 夜夜嗨av一区二区三区网站四季av| 中文欧美在线视频| 欧美色欧美亚洲另类二区| 在线视频你懂得一区| 亚洲一级在线观看| 国产精品视频精品视频| 亚洲欧美日本另类| 久久国产欧美| 国内精品伊人久久久久av影院| 久久精品国产免费看久久精品| 久久漫画官网| 雨宫琴音一区二区在线| 亚洲精品久久久久中文字幕欢迎你 | 午夜精品在线观看| 久久久水蜜桃| 精品999在线观看| 亚洲人成绝费网站色www| 欧美成人免费视频| 亚洲精品麻豆| 亚洲综合视频一区| 国产精品综合不卡av| 久久国产福利| 欧美xart系列在线观看| 亚洲精品网站在线播放gif| 亚洲夜间福利| 国产女人精品视频| 亚洲国产高清自拍| 欧美日韩一区二区在线观看视频| 亚洲视频第一页| 久久精品国产99国产精品澳门| 一区二区三区自拍| 一二三区精品| 国产欧美一区二区色老头 | 91久久久久久| 欧美日韩综合精品| 亚洲综合好骚| 免费成人在线视频网站| 99精品久久免费看蜜臀剧情介绍| 欧美亚洲日本国产| 1024精品一区二区三区| 亚洲午夜精品久久| 国产一区二区三区高清| 99riav久久精品riav| 国产九九精品| 亚洲人成在线播放| 国产精品久久久久久久app| 久久精品女人的天堂av| 欧美午夜片欧美片在线观看| 欧美一区二区高清| 欧美经典一区二区| 亚洲欧美在线观看| 欧美久久九九| 午夜激情久久久| 欧美精品一区在线观看| 亚洲欧美日韩在线综合| 欧美激情视频给我| 午夜免费日韩视频| 欧美日本免费| 欧美在线观看视频一区二区| 欧美日韩在线第一页| 久久精品成人欧美大片古装| 欧美性大战久久久久久久蜜臀 | 亚洲欧美日本国产有色| 在线观看福利一区| 性欧美8khd高清极品| 亚洲激情影院| 久久久精品欧美丰满| 亚洲神马久久| 欧美精品一区二区三区在线播放 |