《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于Canopy-Kmeans算法的電力企業流量數據分析研究
基于Canopy-Kmeans算法的電力企業流量數據分析研究
信息技術與網絡安全 1期
黃冠杰
(對外經濟貿易大學 統計學院,北京100105)
摘要: 針對電力企業關鍵信息基礎設施大量業務數據易遭受網絡攻擊的現象,基于各業務信息系統下已有的網絡安全設備,通過輔助設備采集流量數據,采用Canopy-Kmeans算法進行數據分析研究。首先通過實驗證明了Canopy-Kmeans算法在處理流量數據時,相比傳統K-means算法,具有更好的聚類效果,準確率提高約11%;然后以采集到的電力關鍵業務系統的流量數據為基礎,基于Canopy-Kmeans算法進行挖掘分析實驗,完成相同類型流量數據的聚類,分析出攻擊流量與業務流量的特征項,排除部分誤報信息,合理開展網絡安全防護工作。
中圖分類號: TP391.1
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2022.01.003
引用格式: 黃冠杰. 基于Canopy-Kmeans算法的電力企業流量數據分析研究[J].信息技術與網絡安全,2022,41(1):18-22.
Research on electric power enterprise flow data analysis based on Canopy-Kmeans algorithm
Huang Guanjie
(School of Statistics,University of International Business and Economics,Beijing 100105,China)
Abstract: Aiming at the phenomenon that a large number of business data of the key information infrastructure of electric power enterprises are vulnerable to network attacks, based on the existing network security equipment under each business information system, the flow data is collected through auxiliary equipment, and Canopy-Kmeans algorithm is used for data analysis and research. Firstly, through experiments, it is proved that the Canopy-Kmeans algorithm has a better clustering effect than the traditional K-means algorithm when processing flow data, and the accuracy rate is increased by about 11%. Then, the collected flow data of the power key business system is used,mining and analysis experiments are conducted based on the Canopy-Kmeans algorithm to complete the clustering of the same type of traffic data, analyze the characteristic items of attack traffic and business traffic, eliminate some misreporting information, and carry out network security protection work reasonably.
Key words : electricity;flow collection;Canopy-Kmeans;clustering;flow data analysis

0 引言

隨著信息化與工業化的深度融合,各式各樣的信息系統得到了廣泛應用,信息安全問題不斷涌現,關于信息網絡的攻防戰也愈演愈烈。近幾年,國際上不法組織頻繁攻擊電力企業,層出不窮的網絡攻擊可能會導致系統出現故障,造成網絡癱瘓,嚴重時造成大范圍較長時間的電網故障,產生巨大影響和危害。電力系統作為現代社會的關鍵信息基礎設施之一,其產生的大量業務數據及操作數據,也就自然成為了網絡攻擊的重點目標[1]。建立健全的電力數據分析體系,助力電力企業識別異常流量,保障電力數據安全迫在眉睫。

目前已有部分企業和專家針對電力數據的網絡安全進行了研究,高翔[2]等人采用灰色關聯分析和支持向量機算法對電力信息系統網絡安全進行態勢評估;李群[3]等人提出一種基于“聚類+分類”的惡意攻擊檢測方法,對流量預處理結果進行聚類,基于CART決策樹對攻擊簇實現分類;高鵬[4]等人采用國產密碼、量子密鑰分發和區塊鏈技術對電力終端和數據進行保護;劉川[5]等人基于云計算平臺和SDN技術搭建了一體化電力數據安全防護框架,用于身份認證、攻擊防范、入侵檢測。

但目前大部分電力企業對于收集到的流量數據的挖掘和綜合分析明顯還不夠。若要合理地進行數據分析并分類治理,首先要做到電力企業流量數據的充分采集,通過對采集到的數據進行ETL(Extract-Transform-Load,抽取-轉換-加載)、挖掘和分析[6-7],最終將分析結果應用于實際安全運維中,做到精準治理。本文以某電力企業的實際運行環境為例,首先簡述本文所需的流量數據的數據來源及采集方式,得到其各業務系統下已有的網絡安全設備中的流量數據,然后分別利用傳統K-means算法與Canopy-Kmeans算法進行流量數據聚類分析,挖掘出攻擊流量與業務流量的特征項,并排除部分誤報信息。本研究對合理開展網絡安全防護工作具有指導意義。


本文詳細內容請下載:http://www.jysgc.com/resource/share/2000003931




作者信息:

黃冠杰

(對外經濟貿易大學 統計學院,北京100105)


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 粗喘撞吟np文古代| 欧美色图你懂的| 成人18视频日本| 久久亚洲高清观看| 最近的中文字幕视频完整| 国产精品福利尤物youwu| 一区视频在线播放| 扒开女人内裤边吃奶边摸| 久久精品日日躁精品| 欧美久久久久久| 亚洲欧洲无码一区二区三区| 男人下面进女人下面视频免费| 同人本里番h本子全彩本子| 超清av在线播放不卡无码| 国产成人悠悠影院| 俄罗斯乱理伦片在线观看| 大胸年轻继拇3在线观看| 一级一级特黄女人精品毛片视频 | 国产噜噜在线视频观看| 人人玩人人添人人| 国产精品久久久久久影视| 8050午夜二级毛片全黄app| 在线中文字日产幕| china同性基友gay勾外卖| 少妇中文字幕乱码亚洲影视| 中文字幕在线高清| 日本一卡精品视频免费| 久久国产精品久久精| 晚上看b站直播软件| 亚洲av无码片在线播放| 欧美大交乱xxxx| 亚洲日韩V无码中文字幕| 色偷偷88888欧美精品久久久| 国产在线不卡免费播放| 黄色福利在线观看| 国产成人欧美一区二区三区| 欧美成人久久久| 国产日韩一区二区三区在线观看 | 成人免费的性色视频| 国产欧美另类久久精品蜜芽| 五月婷婷伊人网|