《電子技術應用》
您所在的位置:首頁 > 可編程邏輯 > 解決方案 > 網絡規模更小、速度更快,這是谷歌提出的MorphNet

網絡規模更小、速度更快,這是谷歌提出的MorphNet

2019-04-21

一直以來,深度神經網絡在圖像分類、文本識別等實際問題中發揮重要的作用。但是,考慮到計算資源和時間,深度神經網絡架構往往成本很高。此次,谷歌研究人員提出一種自動化神經網絡架構的新方法 MorphNet,通過迭代縮放神經網絡,節省了資源,提升了性能。


深度神經網絡(DNN)在解決圖像分類、文本識別和語音轉錄等實際難題方面顯示出卓越的效能。但是,為給定問題設計合適的 DNN 架構依然是一項具有挑戰性的任務。考慮到巨大的架構搜索空間,就計算資源和時間而言,為具體應用從零開始設計一個網絡是極其昂貴的。神經架構搜索(NAS)和 AdaNet 等方法使用機器學習來搜索架構設計空間,從而找出適合的改進版架構。另一種方法是利用現有架構來解決類似問題,即針對手頭任務一次性對架構進行優化。


谷歌研究人員提出一種神經網絡模型改進的復雜方法 MorphNet。研究人員發表了論文《MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep Networks》,MorphNet 將現有神經網絡作為輸入,為新問題生成規模更小、速度更快、性能更好的新神經網絡。研究人員已經運用該方法解決大規模問題,設計出規模更小、準確率更高的產品服務網絡。目前,MorphNet 的 TensoreFlow 實現已開源,大家可以利用該方法更高效地創建自己的模型。


MorphNet 開源項目地址:https://github.com/google-research/morph-net


MorphNet 的工作原理


MorphNet 通過收縮和擴展階段的循環來優化神經網絡。在收縮階段,MorphNet 通過稀疏性正則化項(sparsifying regularizer)識別出效率低的神經元,并將它們從網絡中去除,因而該網絡的總損失函數包含每一神經元的成本。但是對于所有神經元,MorphNet 沒有采用統一的成本度量,而是計算神經元相對于目標資源的成本。隨著訓練的繼續進行,優化器在計算梯度時是了解資源成本信息的,從而得知哪些神經元的資源效率高,哪些神經元可以去除。

微信圖片_20190421163937.jpg

MorphNet 的算法。


例如,考慮一下 MorphNet 如何計算神經網絡的計算成本(如 FLOPs)。為簡單起見,我們來思考一下被表示為矩陣乘法的神經網絡層。在這種情況下,神經網絡層擁有 2 個輸入(x_n)、6 個權重 (a,b,...,f) 和 3 個輸出(y_n)。使用標準教科書中行和列相乘的方法,你會發現評估該神經網絡層需要 6 次乘法。

微信圖片_20190421164002.png

神經元的計算成本。


MorphNet 將其計算成本表示為輸入數和輸出數的乘積。請注意,盡管左邊示例顯示出了權重稀疏性,其中兩個權重值為 0,但我們依然需要執行所有的乘法,以評估該神經網絡層。但是,中間示例顯示出了結構性的稀疏,其中神經元 y_n 最后一行上的所有權重值均為 0。MorphNet 意識到該層的新輸出數為 2,并且該層的乘次數量由 6 降至 4。基于此,MorphNet 可以確定該神經網絡中每一神經元的增量成本,從而生成更高效的模型(右邊示例),其中神經元 y_3 被移除。


在擴展階段,研究人員使用寬度乘數(width multiplier)來統一擴展所有層的大小。例如,如果層大小擴大 50%,則一個效率低的層(開始有 100 個神經元,之后縮小至 10 個神經元)將能夠擴展回 15,而只縮小至 80 個神經元的重要層可能擴展至 120,并且擁有更多資源。凈效應則是將計算資源從該網絡效率低的部分重新分配給更有用的部分。


用戶可以在收縮階段之后停止 MorphNet,從而削減該網絡規模,使之符合更緊湊的資源預算。這可以在目標成本方面獲得更高效的網絡,但有時可能導致準確率下降。或者,用戶也可以完成擴展階段,這將與最初目標資源相匹配,但準確率會更高。


為什么使用 MorphNet?


MorphNet 可提供以下四個關鍵價值:


有針對性的正則化:MorphNet 采用的正則化方法比其他稀疏性正則化方法更有目的性。具體來說,MorphNet 方法用于更好的稀疏化,但它的目標是減少資源(如每次推斷的 FLOPs 或模型大小)。這可以更好地控制由 MorphNet 推導出的網絡結構,這些網絡結構根據應用領域和約束而出現顯著差異。


例如,下圖左展示了在 JFT 數據集上訓練的 ResNet-101 基線網絡。在指定目標 FLOPs(FLOPs 降低 40%,中間圖)或模型大小(權重減少 43%,右圖)的情況下,MorphNet 輸出的結構具有很大差異。在優化計算成本時,相比于網絡較高層中的低分辨率神經元,較低層中的高分辨率神經元會被更多地修剪掉。當目標是較小的模型大小時,剪枝策略相反。

微信圖片_20190421164020.png

MorphNet 有目標性的正則化(Targeted Regularization)。矩形的寬度與層級中通道數成正比,底部的紫色條表示輸入層。左:輸入到 MorphNet 的基線網絡;中:應用 FLOP regularizer 后的輸出結果;右:應用 size regularizer 后的輸出結果。


MorphNet 能夠把特定的優化參數作為目標,這使得它可針對特定實現設立具體參數目標。例如,你可以把「延遲」作為整合設備特定計算時間和記憶時間的首要優化參數。


拓撲變換(Topology Morphing):MorphNet 學習每一層的神經元,因此該算法可能會遇到將一層中所有神經元全都稀疏化的特殊情況。當一層中的神經元數量為 0 時,它切斷了受影響的網絡分支,從而有效地改變了網絡的拓撲結構。例如,在 ResNet 架構中,MorphNet 可能保留殘差連接,但移除殘差模塊(如下圖左所示)。對于 Inception 結構,MorphNet 可能移除整個并行分支(如下圖右所示)。

微信圖片_20190421164039.jpg

左:MorphNet 移除 ResNet 網絡中的殘差模塊。右:MorphNet 移除 Inception 網絡中的并行分支。


可擴展性:MorphNet 在單次訓練運行中學習新的網絡結構,當你的訓練預算有限時,這是一種很棒的方法。MorphNet 還可直接用于昂貴的網絡和數據集。例如,在上述對比中,MorphNet 直接用于 ResNet-101,后者是在 JFT 數據集上以極高計算成本訓練出的。


可移植性:MorphNet 輸出的網絡具備可移植性,因為它們可以從頭開始訓練,且模型權重并未與架構學習過程綁定。你不必復制檢查點或按照特定的訓練腳本執行訓練,只需正常訓練新網絡即可。


Morphing Network


谷歌通過固定 FLOPs 將 MorphNet 應用到在 ImageNet 數據集上訓練的 Inception V2 模型上(詳見下圖)。基線方法統一縮小每個卷積的輸出,使用 width multiplier 權衡準確率和 FLOPs(紅色)。而 MorphNet 方法在縮小模型時直接固定 FLOPs,生成更好的權衡曲線。在相同準確率的情況下,新方法的 FLOP 成本比基線低 11%-15%。

微信圖片_20190421164056.jpg

將 MorphNet 應用于在 ImageNet 數據集上訓練的 Inception V2 模型后的表現。僅使用 flop regularizer(藍色)的性能比基線(紅色)性能高出 11-15%。一個完整循環之后(包括 flop regularizer 和 width multiplier),在相同成本的情況下模型的準確率有所提升(「x1」,紫色),第二個循環之后,模型性能得到繼續提升(「x2」,青色)。


這時,你可以選擇一個 MorphNet 網絡來滿足更小的 FLOP 預算。或者,你可以將網絡擴展回原始 FLOP 成本來完成縮放周期,從而以相同的成本得到更好的準確率(紫色)。再次重復 MorphNet 縮小/放大將再次提升準確率(青色),使整體準確率提升 1.1%。


結論


谷歌已經將 MorphNet 應用到其多個生產級圖像處理模型中。MorphNet 可帶來模型大小/FLOPs 的顯著降低,且幾乎不會造成質量損失。


論文:MorphNet: Fast & Simple Resource-Constrained Structure Learning of Deep

微信圖片_20190421164118.jpg


論文鏈接:https://arxiv.org/pdf/1711.06798.pdf


摘要:本研究介紹了一種自動化神經網絡結構設計的新方法 MorphNet。MorphNet 迭代地放縮網絡,具體來說,它通過激活函數上的資源權重(resource-weighted)稀疏性正則化項來縮小網絡,通過在所有層上執行統一的乘積因子(multiplicative factor)來放大網絡。MorphNet 可擴展至大型網絡,對特定的資源約束具備適應性(如 FLOPs per inference),且能夠提升網絡性能。把 MorphNet 應用到大量數據集上訓練的標準網絡架構時,該方法可以在每個領域中發現新的結構,且在有限資源條件下提升網絡的性能。


本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
在线视频亚洲一区| 久久伊人精品天天| 欧美在线在线| 亚洲天堂黄色| 亚洲深夜av| 亚洲婷婷免费| 亚洲午夜一区二区| 亚洲最新在线视频| 99re亚洲国产精品| 9久re热视频在线精品| 亚洲精品男同| 亚洲精品一二三区| 亚洲精品一区二区三| 亚洲精品永久免费| 日韩视频免费看| av成人福利| 在线亚洲欧美专区二区| 一本久久a久久精品亚洲| 亚洲精品色婷婷福利天堂| 亚洲黄色有码视频| 亚洲精品免费在线| 一区二区三区欧美日韩| 99国内精品久久久久久久软件| 亚洲毛片一区| 亚洲作爱视频| 亚洲一区一卡| 午夜一级在线看亚洲| 欧美在线观看网站| 亚洲啪啪91| 9久re热视频在线精品| 一区二区三区视频在线| 亚洲欧美日韩中文在线制服| 欧美一区高清| 久久久综合免费视频| 米奇777超碰欧美日韩亚洲| 欧美www视频在线观看| 欧美黄色免费| 国产精品高潮呻吟久久| 国产视频一区免费看| 伊人成综合网伊人222| 亚洲国内自拍| 中文精品视频| 欧美一区二视频| 91久久精品国产| 在线亚洲伦理| 欧美一区1区三区3区公司| 久久久久国产免费免费| 欧美福利视频在线| 欧美三级日韩三级国产三级| 国产日产精品一区二区三区四区的观看方式| 国产亚洲人成网站在线观看| 在线精品国精品国产尤物884a| 亚洲精选一区二区| 亚洲男人av电影| 91久久线看在观草草青青| 中文久久精品| 久久免费少妇高潮久久精品99| 欧美成人a∨高清免费观看| 欧美天天在线| 国产一区自拍视频| 亚洲毛片在线观看| 欧美亚洲综合网| 一区二区高清视频| 久久国产精品一区二区三区四区| 欧美电影免费观看| 国产精品专区第二| 最新高清无码专区| 午夜精品av| 99视频精品全国免费| 欧美专区第一页| 欧美日韩国产小视频| 国产综合色产在线精品| 日韩天堂在线视频| 亚洲国产高清aⅴ视频| 亚洲欧美国产一区二区三区| 你懂的网址国产 欧美| 国产精品丝袜91| 亚洲三级免费| 久久国产一区二区三区| 亚洲欧美日韩精品久久久久| 美女精品在线| 国产欧美日韩免费| 亚洲精品国偷自产在线99热| 欧美制服丝袜第一页| 亚洲一区二区日本| 欧美国产高潮xxxx1819| 国产精品一区一区| 日韩亚洲在线| 亚洲欧洲精品一区二区三区波多野1战4| 性欧美大战久久久久久久久| 欧美精品久久99| 韩国精品久久久999| 亚洲一区二区免费看| 一区二区av在线| 欧美成人午夜免费视在线看片| 国产亚洲精品激情久久| 一区二区三区www| 亚洲人成人一区二区在线观看| 久久er99精品| 国产精品久久久久一区二区三区| 亚洲国内欧美| 最新亚洲激情| 麻豆成人av| 国内精品免费午夜毛片| 欧美一级黄色录像| 午夜激情一区| 国产精品高清在线| 一区二区三区欧美在线观看| 一本色道久久综合亚洲精品高清 | 性欧美18~19sex高清播放| 欧美激情一区二区三区高清视频 | 亚洲国产福利在线| 久久精品欧美| 久久精品盗摄| 国产日韩精品视频一区| 亚洲综合三区| 欧美亚洲专区| 国产精品综合| 亚洲欧美在线x视频| 午夜日韩激情| 国产欧美日韩激情| 欧美一二区视频| 久久久久久一区二区| 国产日韩欧美一二三区| 午夜精品免费在线| 欧美伊人久久| 国产午夜精品理论片a级大结局 | 久久久国产精品一区二区三区| 国产情侣一区| 欧美中文字幕第一页| 久久久精品tv| 在线播放不卡| 亚洲开发第一视频在线播放| 欧美激情四色| 99在线视频精品| 性欧美办公室18xxxxhd| 国产一区二区三区黄| 亚洲大胆人体视频| 欧美成人国产| 亚洲巨乳在线| 午夜精品久久久久久久99水蜜桃| 国产欧美日韩一区| 久久se精品一区精品二区| 蜜桃av一区二区| 日韩香蕉视频| 欧美资源在线| 亚洲国产精品第一区二区三区 | 中文国产一区| 国产精品一区二区三区成人| 欧美在线视频免费播放| 美女图片一区二区| 亚洲七七久久综合桃花剧情介绍| 中文日韩欧美| 国产欧美精品在线播放| 亚洲第一福利视频| 欧美区在线播放| 亚洲视频一区二区在线观看 | 国产精品永久免费视频| 欧美一区二区视频在线观看| 美女国产一区| 99视频精品全部免费在线| 欧美一区二粉嫩精品国产一线天| 国内外成人在线| 99国产精品国产精品久久 | 黄色综合网站| 日韩一区二区高清| 国产精品视频精品视频| 久久成人18免费网站| 欧美日本三级| 欧美一区二区三区在| 免费日韩一区二区| 亚洲视频一二| 免费成人性网站| 亚洲小视频在线观看| 久久婷婷蜜乳一本欲蜜臀| 91久久久久| 久久精品人人| 亚洲精品护士| 久久久夜精品| 国产精品99久久久久久久久| 美女被久久久| 亚洲欧美日韩区| 欧美国产日韩视频| 欧美亚洲综合久久| 欧美日韩国产色站一区二区三区| 欧美一二区视频| 欧美日韩一二区| 亚洲国产精品电影| 国产精品日韩欧美一区| 亚洲区国产区| 国产日韩一区二区三区在线| 一本色道久久综合亚洲精品高清| 国产在线视频欧美一区二区三区| 亚洲午夜电影网| 一区二区三区在线观看欧美| 亚洲欧美日韩综合国产aⅴ| 亚洲国产欧美一区二区三区久久| 欧美在线视频在线播放完整版免费观看 | 国产精品久久久久久久久久ktv| 亚洲国产成人在线播放|