《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計(jì)應(yīng)用 > 基于深度網(wǎng)絡(luò)的推薦系統(tǒng)偏置項(xiàng)改良研究
基于深度網(wǎng)絡(luò)的推薦系統(tǒng)偏置項(xiàng)改良研究
信息技術(shù)與網(wǎng)絡(luò)安全
張?zhí)煳?/div>
(山東省計(jì)算中心(國家超級計(jì)算濟(jì)南中心),山東 濟(jì)南250014)
摘要: 傳統(tǒng)的矩陣分解算法為用戶和項(xiàng)目分別獨(dú)立設(shè)置了偏置項(xiàng),而沒有深入挖掘特定用戶對于特定項(xiàng)目的隱性偏好;同時(shí),傳統(tǒng)的排序預(yù)測推薦算法將用戶所有打分過的項(xiàng)目都統(tǒng)一地設(shè)置為該用戶的正例項(xiàng)目(無論用戶給出了好評還是差評),這導(dǎo)致訓(xùn)練完成的系統(tǒng)在實(shí)際應(yīng)用中很可能會為用戶繼續(xù)推薦其厭惡的項(xiàng)目。因此提出了一種基于深度網(wǎng)絡(luò)的推薦系統(tǒng)偏置項(xiàng)改良方案,該改良方案考慮了用戶為特定項(xiàng)目所作的評分背后所蘊(yùn)含的好惡態(tài)度,并學(xué)習(xí)出一個(gè)用戶-項(xiàng)目聯(lián)合偏置項(xiàng)加入到推薦過程中以提升推薦性能。在三個(gè)公開數(shù)據(jù)集上進(jìn)行的對比實(shí)驗(yàn)結(jié)果表明,該改良方案可以有效地提升推薦的性能表現(xiàn)。
中圖分類號: TP391
文獻(xiàn)標(biāo)識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.08.007
引用格式: 張?zhí)煳? 基于深度網(wǎng)絡(luò)的推薦系統(tǒng)偏置項(xiàng)改良研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(8):42-46.
Research on improvement of bias in recommendation system based on deep neural network
Zhang Tianwei
(Shandong Computer Science Center(National Super Computer Center in Jinan),Jinan 250014,China)
Abstract: Traditional matrix factorization algorithm sets bias for users and items independently, without digging into the latent preferences of specific users for specific items. As in traditional ranking prediction recommendation algorithm, all the rated items of a user are uniformly set as the user′s positive items(regardless of whether the user gives a good or a bad review). As a result, the trained system is likely to continue to recommend projects that users hate in practical applications. Therefore, an improved bias improvement scheme of recommendation system based on deep neural network is proposed, which takes into account the liking and disliking behind the ratings made by users for specific items, and a joint bias is learned for the recommendation process. The results of comparative experiments on three open datasets show that the improved scheme can effectively improve the recommended performance.
Key words : recommendation algorithm;collaborative filtering;deep neural network;implicit feedback


0 引言

隨著互聯(lián)網(wǎng)的迅猛發(fā)展,用戶想要從海量的信息中獲取自己真正感興趣的內(nèi)容已經(jīng)變成了一件頗有挑戰(zhàn)性的工作。解決這種“信息過載”問題的常用技術(shù)之一就是推薦系統(tǒng)[1-2]。推薦系統(tǒng)往往利用用戶對于項(xiàng)目的歷史交互數(shù)據(jù)信息(如評分、評論、歷史購買記錄等)[3]建立模型來挖掘用戶與項(xiàng)目之間的隱性關(guān)聯(lián)[4-5],從而得以為用戶推薦與其喜好的歷史交互項(xiàng)目高度相似的新項(xiàng)目,幫助用戶篩選出其需要的信息[6-7]。




本文詳細(xì)內(nèi)容請下載:http://www.jysgc.com/resource/share/2000003723





作者信息:

張?zhí)煳?/p>

(山東省計(jì)算中心(國家超級計(jì)算濟(jì)南中心),山東 濟(jì)南250014)


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 97精品免费视频| 久久久国产精品| 毛片基地看看成人免费| 动漫成年美女黄漫网站国产| 邻居的又大又硬又粗好爽| 国产欧美一区二区另类精品 | 又大又黄又粗又爽的免费视频| 阿娇与冠希13分钟视频未删减| 国产日韩精品视频| 香蕉狠狠再啪线视频| 国内免费高清视频在线观看| eeuss影院www在线观看免费| 宅男lu66国产在线播放| 中文字幕乱码系列免费| 日本一区二区三区在线视频观看免费| 久久精品视频免费看| 欧洲美熟女乱又伦免费视频| 亚洲成aⅴ人片| 欧美精品亚洲精品| 亚洲精品国产成人| 渣男渣女抹胸渣男渣女在一起| 你把腰抬一下不然没法发动| 粗大挺进尤物人妻中文字幕| 十六以下岁女子毛片免费| 色噜噜亚洲男人的天堂| 国产专区在线视频| 诗涵留学荷兰被黑人摘小说| 国产在线观看无码免费视频| 91精品国产免费久久久久久青草| 国产精品一二三区| 1000部拍拍拍18勿入免费视频软件| 国产精品成人久久久久久久| 2022国产精品视频| 国产精品线在线精品国语| 91成人高清在线播放| 国产韩国精品一区二区三区久久| 99久久免费只有精品国产| 国语自产少妇精品视频| 99久久国产免费福利| 在线a亚洲视频播放在线观看| 99久久久国产精品免费牛牛 |