《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 基于深度網(wǎng)絡(luò)的推薦系統(tǒng)偏置項改良研究
基于深度網(wǎng)絡(luò)的推薦系統(tǒng)偏置項改良研究
信息技術(shù)與網(wǎng)絡(luò)安全
張?zhí)煳?/div>
(山東省計算中心(國家超級計算濟南中心),山東 濟南250014)
摘要: 傳統(tǒng)的矩陣分解算法為用戶和項目分別獨立設(shè)置了偏置項,而沒有深入挖掘特定用戶對于特定項目的隱性偏好;同時,傳統(tǒng)的排序預(yù)測推薦算法將用戶所有打分過的項目都統(tǒng)一地設(shè)置為該用戶的正例項目(無論用戶給出了好評還是差評),這導(dǎo)致訓(xùn)練完成的系統(tǒng)在實際應(yīng)用中很可能會為用戶繼續(xù)推薦其厭惡的項目。因此提出了一種基于深度網(wǎng)絡(luò)的推薦系統(tǒng)偏置項改良方案,該改良方案考慮了用戶為特定項目所作的評分背后所蘊含的好惡態(tài)度,并學(xué)習(xí)出一個用戶-項目聯(lián)合偏置項加入到推薦過程中以提升推薦性能。在三個公開數(shù)據(jù)集上進行的對比實驗結(jié)果表明,該改良方案可以有效地提升推薦的性能表現(xiàn)。
中圖分類號: TP391
文獻標(biāo)識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.08.007
引用格式: 張?zhí)煳? 基于深度網(wǎng)絡(luò)的推薦系統(tǒng)偏置項改良研究[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(8):42-46.
Research on improvement of bias in recommendation system based on deep neural network
Zhang Tianwei
(Shandong Computer Science Center(National Super Computer Center in Jinan),Jinan 250014,China)
Abstract: Traditional matrix factorization algorithm sets bias for users and items independently, without digging into the latent preferences of specific users for specific items. As in traditional ranking prediction recommendation algorithm, all the rated items of a user are uniformly set as the user′s positive items(regardless of whether the user gives a good or a bad review). As a result, the trained system is likely to continue to recommend projects that users hate in practical applications. Therefore, an improved bias improvement scheme of recommendation system based on deep neural network is proposed, which takes into account the liking and disliking behind the ratings made by users for specific items, and a joint bias is learned for the recommendation process. The results of comparative experiments on three open datasets show that the improved scheme can effectively improve the recommended performance.
Key words : recommendation algorithm;collaborative filtering;deep neural network;implicit feedback


0 引言

隨著互聯(lián)網(wǎng)的迅猛發(fā)展,用戶想要從海量的信息中獲取自己真正感興趣的內(nèi)容已經(jīng)變成了一件頗有挑戰(zhàn)性的工作。解決這種“信息過載”問題的常用技術(shù)之一就是推薦系統(tǒng)[1-2]。推薦系統(tǒng)往往利用用戶對于項目的歷史交互數(shù)據(jù)信息(如評分、評論、歷史購買記錄等)[3]建立模型來挖掘用戶與項目之間的隱性關(guān)聯(lián)[4-5],從而得以為用戶推薦與其喜好的歷史交互項目高度相似的新項目,幫助用戶篩選出其需要的信息[6-7]。




本文詳細(xì)內(nèi)容請下載:http://www.jysgc.com/resource/share/2000003723





作者信息:

張?zhí)煳?/p>

(山東省計算中心(國家超級計算濟南中心),山東 濟南250014)


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 午夜剧场免费体验| 国产精品久久女同磨豆腐| 丰满人妻一区二区三区视频| 欧美人与动人物姣配xxxx| 亚洲综合色视频在线观看| 精品国产三级a| 国产人与zoxxxx另类| 国产喷水女王在线播放| 国产精品欧美日韩一区二区| 99久久无色码中文字幕人妻| 娇小枯瘦日本xxxx| 中文字幕一精品亚洲无线一区| 日本男人操女人| 久久综合九色综合欧美狠狠| 欧美亚洲国产一区二区三区| 亚洲欧美日本另类| 澳门皇冠8x8华人永久免费| 再深点灬舒服了灬太大了乡村 | 免费看黄色一级| 美国十次狠狠色综合av| 国产91精品一区二区麻豆亚洲| 青青草成人影院| 国产壮汉男同志69可播放| 久久机热这里只有精品无需| 国产精品久久久久久久久久免费| 538在线观看视频| 国产高清在线精品二区| 99久久久国产精品免费蜜臀| 天天视频国产免费入口| а天堂中文最新一区二区三区| 成人午夜性影院视频| 两个人一上一下剧烈运动| 成人国产在线24小时播放视频| 中文字幕在线观看亚洲视频| 无套内射无矿码免费看黄| 久久久久国产精品免费免费不卡| 日韩人妻无码专区精品| 久久无码专区国产精品| 日韩不卡手机视频在线观看| 久久精品一区二区三区中文字幕| 日韩欧美中文字幕在线播放 |