《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 復雜背景下小尺寸多角度人臉檢測方法研究
復雜背景下小尺寸多角度人臉檢測方法研究
網絡安全與數據治理
黃杰,劉芬
天津職業(yè)技術師范大學電子工程學院
摘要: 為了提升復雜背景下小尺寸人臉檢測精度,提出了一種人臉檢測方法GhostNet-MTCNN。在多任務級聯卷積神經網絡(MTCNN)主干網絡上,將占用計算資源的普通卷積進行舍棄,利用GhostNet網絡中計算量更低的Ghost bottleneck模組替代卷積的作用,重新構建網絡特征提取功能,從而搭建一個新的模型。實驗結果表明,該方法可以有效平衡參數量和精度。在Easy、Medium、Hard三種驗證集上,與MTCNN相比在參數量僅增加0.62M的前提下精度分別提升了 5.6%、6.6%、7.8%,與MobileNetV3-MTCNN相比在參數量減少1.27M的同時精度又分別提升了1.6%、0.8%、0.5%。該研究能夠在復雜場景下提高模型對小尺寸、多角度人臉檢測精度,同時也能夠有效平衡參數量和檢測精度使其成為在邊緣設備部署中更優(yōu)的選擇。
中圖分類號:TP18文獻標識碼:ADOI:10.19358/j.issn.2097-1788.2024.04.008
引用格式:黃杰,劉芬.復雜背景下小尺寸多角度人臉檢測方法研究[J].網絡安全與數據治理,2024,43(4):46-52.
Research on small.scale, multi.angle face detection methods in complex backgrounds
Huang Jie,Liu Fen
School of Electronic Engineering, Tianjin University of Technology and Education
Abstract: A face detection approach which is named GhostNet.MTCNN was proposed to enhance the precision of small sized face detection in complex backgrounds. On the backbone of MTCNN, this approach uses the lower computational Ghost bottleneck module which is in the GhostNet to replace the convolutional function, and discards the common convolution which occupies computer resources to configure the network′s feature extraction function. Through the process, a new module will be set up. The experimental results showed that the approach can effectively balance parameter quantity and precision. Across three validation sets categorized as Easy, Medium and Hard, compared to the original MTCNN, the proposed GhostNet-MTCNN achieves notable improvements in accuracy respectively 5.6%, 6.6% and 7.8%, while the parameter quantity only with a minimal increase of 0.62M. Furthermore, compared to MobileNetV3-MTCNN, GhostNet-MTCNN outperforms by enhancing accuracy by 1.6%, 0.8% and 0.5%, meanwhile a reduction in parameter quantity by 1.27M. The study can not only enhance the precision of the module to detect the small-sized and multi-angle faces in complex backgrounds but also can effectively balance parameter quantity and detection precision, which will make it a superior choice for edge deployment devices.
Key words : face detection; multi-task cascaded convolutional networks; lightweight network; edge devices

引言

人臉檢測技術廣泛應用于考勤、解鎖設備、身份驗證、監(jiān)控場所、自動駕駛等場合[1-3]。在當前的人臉檢測領域,通常采用深度神經網絡架構。2014年Girshick等人提出的R-CNN[4]目標檢測算法模型成功地將深度學習應用到目標檢測領域,這種目標檢測算法使用的是基于候選區(qū)域的檢測方法。Ren等人在FastR-CNN基礎上進行改進,提出了FasterR-CNN[5],該模型提出了專門的候選區(qū)域生成網絡。除了以上兩種目標檢測網絡模型外,還有基于單次目標檢測的網絡模型,如YOLO[6-8]和SSD[9]。這類方法優(yōu)勢在于檢測速度快,但對小目標的檢測效果不佳。這些深度神經網絡在邊緣設備部署十分消耗資源,對于硬件的計算能力和能耗的要求很高,很難應用到實際場景中。多任務級聯卷積神經網絡(Multi-task Cascaded Convolutional Networks,MTCNN)[10]作為一種經典的人臉檢測方法,以其高效的性能、模型復雜度低而聞名,更適合邊緣設備的應用。但隨著人臉檢測任務的不斷復雜化,MTCNN也面臨一系列挑戰(zhàn),例如在小尺寸、遮擋、多角度和光照變化等情況下的檢測效果下降。文獻[11]中將MTCNN與VGGNet相結合,提升了模型檢測精度,但是相對應的模型計算量也變多了。


本文詳細內容請下載:

http://www.jysgc.com/resource/share/2000005968


作者信息:

黃杰,劉芬

(天津職業(yè)技術師范大學電子工程學院 ,天津300222)


Magazine.Subscription.jpg

此內容為AET網站原創(chuàng),未經授權禁止轉載。
主站蜘蛛池模板: 成在人线av无码免费高潮水| 欧美成人中文字幕dvd| 国产亚洲3p无码一区二区| 中文乱码字幕午夜无线观看| 在线无码午夜福利高潮视频| 一本大道东京热无码一区| 日本55丰满熟妇厨房伦| 久久精品乱子伦免费| 欧美videos另类极品| 亚洲成人高清在线| 波多野结衣无内裤护士| 免费播放春色aⅴ视频| 精品无码久久久久久国产| 国产亚洲视频在线观看网址| 成人午夜免费福利视频| 国产福利免费观看| 18到20岁女人一级毛片| 国产视频xxx| 99精品免费观看| 天天做天天爱天天综合网| а√在线地址最新版| 少妇高潮喷水久久久久久久久久| 中文字幕一区二区三区四区| 日日婷婷夜日日天干| 久久久精品2019免费观看| 日韩人妻系列无码专区| 久久精品国产精品亚洲精品| 曰韩人妻无码一区二区三区综合部| 亚洲一区第一页| 欧美人交性视频在线香蕉| 亚洲成人高清在线| 欧美成人免费一级人片| 亚洲欧洲日韩在线电影| 欧美肥老太肥506070| 亚洲理论电影在线观看| 波多野结衣办公室33分钟| 亚洲精品亚洲人成在线播放| 波多野结衣办公室在线| 亚洲欧美国产视频| 欧美破苞合集magnet| 亚洲国产精品福利片在线观看 |