《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 基于分割的自然場景下文本檢測方法與應(yīng)用
基于分割的自然場景下文本檢測方法與應(yīng)用
2021年電子技術(shù)應(yīng)用第2期
陳小順,王良君
江蘇大學 計算機科學與通信工程學院,江蘇 鎮(zhèn)江212013
摘要: 自然場景文本檢測識別在智能設(shè)備中應(yīng)用廣泛,而對文本識別的第一步則是對文本進行精確的定位檢測。對于現(xiàn)有像素分割方法PixelLink中存在的彎曲文本定位包含過多背景信息、檢測圖像后處理不足兩個主要問題提出改進。引入特征通道注意力機制,關(guān)注生成特征圖中特征通道間的權(quán)重關(guān)系,提升檢測方法的魯棒性。接著改變公開數(shù)據(jù)集標注形式,將坐標點表示為一串帶有方向的序列形式,在LSTM模型中進行多邊形框的學習與框定。最后在公開數(shù)據(jù)集和自建數(shù)據(jù)集上進行文本檢測測試。實驗表明,改進的檢測方法在各數(shù)據(jù)集中表現(xiàn)優(yōu)于原方法,與當前領(lǐng)先方法精度相近,能夠在各個環(huán)境中完成對文本的檢測功能。
中圖分類號: TN911.73;TP391.4
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200316
中文引用格式: 陳小順,王良君. 基于分割的自然場景下文本檢測方法與應(yīng)用[J].電子技術(shù)應(yīng)用,2021,47(2):54-57.
英文引用格式: Chen Xiaoshun,Wang Liangjun. Text detection and application in natural scene based on segmentation[J]. Application of Electronic Technique,2021,47(2):54-57.
Text detection and application in natural scene based on segmentation
Chen Xiaoshun,Wang Liangjun
School of Computer Science and Telecommunication Engineering, Jiangsu University,Zhenjiang 212013,China
Abstract: Text recognition in nature scene is currently applied in various intelligence equipment. The first step of text recognition is to precisely locate the text. In the Pixel Link text location methods, there are mainly two problems: too much background information is incorporated in the text region, and the test accuracy is insufficient. Aiming at these issues, an improved text location method was proposed to precisely locate the text in the natural scene. At first, an attention mechanism was incorporated into the original network. By focusing on the weight relationship between feature channels in the generated feature map, one can improve the weight coefficient of effective feature channels, and suppress the weight of inefficient or invalid feature channels. In the second, by changing the form of data set annotation, the coordinate points can be expressed as a series of sequence forms, so that the text lines can be framed adaptively in the LSTM model. At last, the located object is rotated according to the angle between a pair of vertexes in the polygon frame, and is subsequently fed to the text recognition interface to obtain the final character. Finally, the text detection test is carried out on the open data set and self-built data set. The experimental results show that the improved detection method is superior to the original method on different dataset, and the accuracy is similar to the current leading method.
Key words : pixel segmentation;attention mechanism;LSTM;natural scene text detection

0 引言

    視覺圖像是人們獲取外界信息的主要來源,文本則是對事物的一種凝練描述,人通過眼睛捕獲文本獲取信息,機器設(shè)備的眼睛則是冰冷的攝像頭。如何讓機器設(shè)備從拍照獲取的圖像中準確檢測識別文本信息逐漸為各界學者關(guān)注。

    現(xiàn)代文本檢測方法多為基于深度學習的方法,主要分為基于候選框和基于像素分割的兩種形式。本文選擇基于像素分割的深度學習模型作為文本檢測識別的主要研究方向,能夠同時滿足對自然場景文本的精確檢測,又能保證后續(xù)設(shè)備功能(如語義分析等功能)的拓展。




本文詳細內(nèi)容請下載:http://www.jysgc.com/resource/share/2000003385




作者信息:

陳小順,王良君

(江蘇大學 計算機科學與通信工程學院,江蘇 鎮(zhèn)江212013)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 久久综久久美利坚合众国| 亚洲美国产亚洲av| 香蕉久久成人网| 国产精品国产精品偷麻豆 | 18成禁人视频免费网站| 夜色www国产精品资源站| 一级做a爱片特黄在线观看免费看| 日本三级免费看| 久久精品成人一区二区三区 | 日韩午夜免费论理电影网| 亚洲午夜精品久久久久久人妖 | 国产嫩草影院在线观看| h在线观看视频免费网站| 国产裸体舞一区二区三区| a拍拍男女免费看全片| 宝贝过来趴好张开腿让我看看 | 91香蕉视频黄色| 国产精品9999久久久久| 30岁的女人韩剧免费观看| 国语对白在线视频| a级毛片高清免费视频在线播放| 影音先锋无码a∨男人资源站| 丰满人妻熟妇乱又伦精品软件| 日本护士激情xxxx| 久久精品国产99国产精品澳门| 最新精品亚洲成a人在线观看| 亚洲午夜久久久久久尤物| 欧美成人免费观看的| 亚洲欧美日韩中文高清ww| 永久免费无码网站在线观看| 亚洲综合20p| 澳门开奖结果2023开奖记录今晚直播视频 | 吃奶摸下激烈视频无遮挡| 老公和他朋友一块上我可以吗| 国产乱妇乱子在线播视频播放网站| 久久精品国产99久久久| 极品人妻少妇一区二区三区| 亚洲jjzzjjzz在线播放| 欧美yw精品日本国产精品| 亚洲中文久久精品无码1| 欧洲精品在线观看|