《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 基于分割的自然場景下文本檢測方法與應(yīng)用
基于分割的自然場景下文本檢測方法與應(yīng)用
2021年電子技術(shù)應(yīng)用第2期
陳小順,王良君
江蘇大學 計算機科學與通信工程學院,江蘇 鎮(zhèn)江212013
摘要: 自然場景文本檢測識別在智能設(shè)備中應(yīng)用廣泛,而對文本識別的第一步則是對文本進行精確的定位檢測。對于現(xiàn)有像素分割方法PixelLink中存在的彎曲文本定位包含過多背景信息、檢測圖像后處理不足兩個主要問題提出改進。引入特征通道注意力機制,關(guān)注生成特征圖中特征通道間的權(quán)重關(guān)系,提升檢測方法的魯棒性。接著改變公開數(shù)據(jù)集標注形式,將坐標點表示為一串帶有方向的序列形式,在LSTM模型中進行多邊形框的學習與框定。最后在公開數(shù)據(jù)集和自建數(shù)據(jù)集上進行文本檢測測試。實驗表明,改進的檢測方法在各數(shù)據(jù)集中表現(xiàn)優(yōu)于原方法,與當前領(lǐng)先方法精度相近,能夠在各個環(huán)境中完成對文本的檢測功能。
中圖分類號: TN911.73;TP391.4
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200316
中文引用格式: 陳小順,王良君. 基于分割的自然場景下文本檢測方法與應(yīng)用[J].電子技術(shù)應(yīng)用,2021,47(2):54-57.
英文引用格式: Chen Xiaoshun,Wang Liangjun. Text detection and application in natural scene based on segmentation[J]. Application of Electronic Technique,2021,47(2):54-57.
Text detection and application in natural scene based on segmentation
Chen Xiaoshun,Wang Liangjun
School of Computer Science and Telecommunication Engineering, Jiangsu University,Zhenjiang 212013,China
Abstract: Text recognition in nature scene is currently applied in various intelligence equipment. The first step of text recognition is to precisely locate the text. In the Pixel Link text location methods, there are mainly two problems: too much background information is incorporated in the text region, and the test accuracy is insufficient. Aiming at these issues, an improved text location method was proposed to precisely locate the text in the natural scene. At first, an attention mechanism was incorporated into the original network. By focusing on the weight relationship between feature channels in the generated feature map, one can improve the weight coefficient of effective feature channels, and suppress the weight of inefficient or invalid feature channels. In the second, by changing the form of data set annotation, the coordinate points can be expressed as a series of sequence forms, so that the text lines can be framed adaptively in the LSTM model. At last, the located object is rotated according to the angle between a pair of vertexes in the polygon frame, and is subsequently fed to the text recognition interface to obtain the final character. Finally, the text detection test is carried out on the open data set and self-built data set. The experimental results show that the improved detection method is superior to the original method on different dataset, and the accuracy is similar to the current leading method.
Key words : pixel segmentation;attention mechanism;LSTM;natural scene text detection

0 引言

    視覺圖像是人們獲取外界信息的主要來源,文本則是對事物的一種凝練描述,人通過眼睛捕獲文本獲取信息,機器設(shè)備的眼睛則是冰冷的攝像頭。如何讓機器設(shè)備從拍照獲取的圖像中準確檢測識別文本信息逐漸為各界學者關(guān)注。

    現(xiàn)代文本檢測方法多為基于深度學習的方法,主要分為基于候選框和基于像素分割的兩種形式。本文選擇基于像素分割的深度學習模型作為文本檢測識別的主要研究方向,能夠同時滿足對自然場景文本的精確檢測,又能保證后續(xù)設(shè)備功能(如語義分析等功能)的拓展。




本文詳細內(nèi)容請下載:http://www.jysgc.com/resource/share/2000003385




作者信息:

陳小順,王良君

(江蘇大學 計算機科學與通信工程學院,江蘇 鎮(zhèn)江212013)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 国内精品18videosex性欧美| 久久精品国产精品亚洲| 一级毛片一级片| 欧美精品在线视频| 国产高清自产拍av在线| 中文字幕乱码人妻综合二区三区| 污片在线观看网站| 国产五月天在线| 99国产精品99久久久久久| 日韩一区精品视频一区二区| 免费看日b视频| 激情三级hd中文字幕| 小小的日本电影完整版在线观看| 亚洲人成影院77777| 精品在线视频一区| 国产特级毛片aaaaaa毛片| 一本大道久久a久久综合| 极品美女养成系统| 免费人成视频在线观看网站| 免费黄色网址网站| 国产精品综合在线| 中文天堂最新版www| 欧美一级高清免费a| 免费大学生国产在线观看p| 股间白浊失禁跪趴老师| 国产素人在线观看| 中文亚洲av片不卡在线观看| 日本免费大黄在线观看| 亚洲国产日产无码精品| 精品午夜福利在线观看| 国产成人综合久久久久久| a级片免费在线播放| 日本卡一卡二新区| 久久综合久综合久久鬼色| 欧美BBBWBBWBBWBBW| 伊人久久精品一区二区三区| 韩国福利影视一区二区三区| 国内揄拍高清国内精品对白| h视频免费观看| 无翼乌日本漫画| 亚洲va韩国va欧美va天堂|