《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 一種基于時間序列的環控生保系統遙測數據預測方法
一種基于時間序列的環控生保系統遙測數據預測方法
2020年信息技術與網絡安全第12期
潘點飛1,胡 偉1,周文興1,張慧穎2,唐 斌1,羅亞斌1,鄭為閣1
1.中國航天員科研訓練中心,北京 100094;2.北京跟蹤與通信技術研究所,北京100094
摘要: 為實現環控生保系統在軌故障預測與健康管理,研究系統遙測數據的時間序列信息。通過預測關鍵遙測數據的變化趨勢,實現在故障出現之前對其識別、預判。結合環控生保系統遙測數據的特點,通過AIC與BIC相結合的方法確定預測模型。運用該模型對實際工程中遙測數據進行預測驗證,結果表明采用該方法對氧分壓數據進行前向6點預測,預測精度可達98.2%,可為后續系統在軌故障預測與健康管理提供基礎。
中圖分類號: V476.1
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2020.12.012
引用格式: 潘點飛,胡偉,周文興,等. 一種基于時間序列的環控生保系統遙測數據預測方法[J].信息技術與網絡安全,2020,39(12):67-72.
A telemetry data prediction method of environmental control and life support system based on time series analysis
Pan Dianfei1,Hu Wei1,Zhou Wenxing1,Zhang Huiying2,Tang Bin1,Luo Yabin1,Zheng Weige1
1.China Astronaut Research and Training Center,Beijing 100094,China; 2.Beijing Institute of Tracking and Telecommunications Technology,Beijing 100094,China
Abstract: In order to realize on orbit fault prediction and health management of environmental control and life support system(ECLSS), time series information of telemetry data is studied. By predicting the change trend of key telemetry data, the fault can be identified and predicted before it occurs. Combined with the characteristics of telemetry data of ECLSS, the prediction model is determined by combining AIC and BIC. The model is used to predict and verify the telemetry data in practical engineering. The experimental results show that the prediction accuracy of this method can reach 98.2%when the oxygen partial pressure data is predicted forward by using this method, which can provide the basis for the subsequent system on orbit fault prediction and health management.
Key words : environmental control and life support system(ECLSS);telemetry data; prediction;fault prediction

0 引言

    當前,我國載人航天工程已經進入航天員長期駐留及進行空間科學實驗的空間站階段,環控生保系統直接關系到航天員的生命健康,要求對其運行狀態監測更加及時準確,對其故障預判、診斷更加快速智能。

    環控生保系統的運行狀態主要通過遙測數據獲得,數據的變化與產品、功能狀態的變化息息相關。從遙測數據中識別、提取關鍵信息是常用的航天器故障診斷方法。目前航天領域普遍采用二值邏輯型閾值比較方法進行故障識別[1],該方法雖然簡單、直觀,但是存在諸如閾值不易界定、缺乏故障征兆識別能力、故障診斷效率低等問題,且未能充分利用遙測數據中包含的大量時域、空域信息,數據利用效率較低。

    本文提出一種基于時間序列的遙測數據預測方法,能夠根據遙測數據的歷史信息預測未來一段時間的變化趨勢,在故障出現之前對其進行識別、預判,有效確保分系統的健康、長期工作,降低未來空間站環控生保分系統長期運行的維護成本。




本文詳細內容請下載:http://www.jysgc.com/resource/share/2000003234




作者信息:

潘點飛1,胡  偉1,周文興1,張慧穎2,唐  斌1,羅亞斌1,鄭為閣1

(1.中國航天員科研訓練中心,北京 100094;2.北京跟蹤與通信技術研究所,北京100094)

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 在免费jizzjizz在线播| 日本三级香港三级人妇m| 亚洲精品午夜久久久伊人| 精品无码中出一区二区| 国产亚洲成AV人片在线观看导航 | 亚洲熟妇无码爱v在线观看| 真正国产乱子伦高清对白| 成年轻人网站色免费看| 亚洲第一精品福利| 禁忌2电影在线观看完整版免费观看| 国产91久久精品一区二区| 77777_亚洲午夜久久多人| 天堂在线观看视频| www永久免费视频| 少妇极品熟妇人妻| 中国又粗又大又爽的毛片| 日本japanese丰满奶水| 久久国产精品范冰啊| 最强yin女系统白雪| 亚洲av日韩综合一区二区三区| 精品久久久久久久久中文字幕 | 污视频app网站| 人人做人人爽人人爱| 粉嫩虎白女P虎白女在线| 出轨的女人hd中文字幕| 精品香蕉一区二区三区| 国产AV无码国产AV毛片| 色猫咪av在线网址| 国产中文在线观看| 蜜桃成熟时无删减手机在线观看| 国产剧情在线播放| 青青青视频在线| 国产免费卡一卡三卡乱码| 香港三级欧美国产精品| 国外欧美一区另类中文字幕| a级毛片毛片免费观看久潮喷| 日本精品久久久久中文字幕8| 九九热在线视频观看这里只有精品| 欧美三级欧美一级| 亚洲人成影院在线观看| 欧美亚洲人成网站在线观看|