《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 一種基于SSD與FRN相結合的密集連接行人檢測算法
一種基于SSD與FRN相結合的密集連接行人檢測算法
2020年信息技術與網絡安全第12期
馮婷婷,葛華勇,孫家慧
東華大學 信息科學與技術學院,上海201620
摘要: 現實場景行人的復雜性和多樣性使得行人檢測成為計算機視覺領域中一個既具有研究價值又極具挑戰性的熱門課題,為提高其準確性,提出一種基于SSD(Single Shot Multibox Detector)與FRN(Filter Response Normalization)相結合的密集連接行人檢測算法,將串聯式的SSD基礎網絡修改為引入上下文語義信息的多層融合的密集連接的FRN網絡結構,運用聚類思想設置適宜行人尺度的候選框,并且根據行人尺寸的統計分布規律調整不同檢測層的縮放因子,從而實現端到端訓練。在融合數據集和VOC2007TEST數據集上驗證該模型的性能,相比于SSD方法,該方法準確率AP(Average Precision)分別提高5.8%、2.9%,具有更高的準確性和魯棒性。
中圖分類號: TP301.6
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2020.12.010
引用格式: 馮婷婷,葛華勇,孫家慧. 一種基于SSD與FRN相結合的密集連接行人檢測算法[J].信息技術與網絡安全,2020,39(12):56-60,66.
A densely connected pedestrian detection algorithm based on the combination of SSD and FRN
Feng Tingting,Ge Huayong,Sun Jiahui
School of Information Science and Technology,Donghua University,Shanghai 201620,China
Abstract: The complexity and diversity of pedestrians in real scenes make pedestrian detection a hot topic with both research value and challenge in the field of computer vision. In order to improve its accuracy, this paper proposes a densely connected pedestrian detection algorithm based on the combination of SSD and FRN, modifies the serial SSD basic network into a multi-layered densely-connected FRN network structure that introduces contextual semantic information, and uses clustering ideas to set candidate boxes suitable for pedestrian scale, and adjusts the scaling factors of different detection layers according to the statistical distribution law of pedestrian size, so as to achieve end-to-end training. The performance of the model is verified on the fusion dataset and the VOC2007TEST dataset. Compared with the SSD method, the accuracy of the method AP is improved by 5.8% and 2.9% respectively, with higher accuracy and robustness.
Key words : pedestrian detection;dense connection;clustering algorithm;SSD;FRN

0 引言

    行人檢測作為計算機視覺技術的重要分支和智能化產品的核心技術,受到了學術界和工業界的廣泛關注,其能夠從圖像或視頻中識別出行人,并給出其具體的位置,在車輛輔助駕駛和行人重識別技術等方面有巨大的研究價值和應用前景。行人檢測作為車輛輔助駕駛技術中不可或缺的一部分,可以及時檢測出車輛前方的行人并針對實際狀況及時提醒司機或者緊急制動,從而避免交通事故的發生;在刑偵工作中,刑偵人員經常要瀏覽多個攝像頭中的視頻,此時先進行行人檢測判斷視頻中是否存在行人,把視頻中的行人篩選出來,再利用行人重識別技術查找某個特定的行人在哪些攝像頭曾經出現過,可為刑偵工作帶來便利。

    近十幾年間,基于深度學習的行人檢測技術取得了巨大進步,能夠自動學習從圖像像素中提取的基于邊緣的低級特征和基于語義信息的高級特征。其分為兩階段檢測算法和單階段檢測算法。在兩階段檢測算法中,文獻[1]提出了基于區域的卷積神經網絡(Region based Convolutional Neural Network,R-CNN),文獻[2]提出了空間金字塔池化(Spatial Pyramid Pooling,SPP)網絡,文獻[3]提出了快速基于區域的卷積網絡方法(Fast-RCNN),文獻[4-5]提出了Faster-RCNN。這些目標檢測算法的訓練過程步驟繁瑣,檢測速度慢,沒有達到實時的檢測標準。基于此,以REDMON J[6]提出的統一實時目標檢測框架(You only look once,Yolo)和以Liu Wei[7]提出的單階段多尺度檢測器(Single Shot MultiBox Detector,SSD)框架為代表的單階段檢測算法由此產生。Yolo存在定位精度、召回率等較低的問題,泛化能力相對較弱,為了解決該算法的缺陷,2016年Liu Wei等提出SSD算法進行多尺度檢測,在保證速度的同時提高了檢測精度,但是其對于小目標檢測不精準,加之在實際生活中,由于行人穿著、姿態、尺度、視角、光照和復雜背景等多方面原因,在檢測精度及速度方面的提高仍是研究重點。由此針對行人多尺度問題,本文提出一種FRN提升模型性能的密集連接的SSD行人檢測算法,嘗試引入不依賴批尺寸大小的上下文語義信息的多層特征融合的密集連接網絡結構,結合行人檢測任務特點進行優化與改進。




本文詳細內容請下載:http://www.jysgc.com/resource/share/2000003230




作者信息:

馮婷婷,葛華勇,孫家慧

(東華大學 信息科學與技術學院,上海201620)

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 欧美jlzz18性欧美| www久久com| 欧美a级在线观看| 亚洲色图古典武侠| 美女把尿口扒开让男人桶| 国产女人乱子对白AV片| 在线看的你懂的| 国内精品一区二区三区最新| 免费看**一片毛片| 色婷婷综合久久久| 在线精品免费视频| 一二三四免费观看在线电影中文 | 美女的尿口免费| 国产免费av片在线播放| 精品一区二区视频在线观看| 国产精品无码久久综合网| 91自产拍在线观看精品| 成年网站在线观看| 久久国产精品波多野结衣AV| 最近中文字幕完整国语视频| 你好老叔电影观看免费| 韩国xxxx69| 国产日产久久高清欧美一区| 18禁黄网站禁片无遮挡观看| 成人小视频在线观看| 久久久久久国产精品美女| 日韩人妻无码精品无码中文字幕| 亚洲视频www| 看全色黄大色黄大片大学生| 国产午夜无码精品免费看动漫| 99久久精品九九亚洲精品| 好大好爽再深一点在线观看| 久久婷婷五月综合色精品| 欧美精品v国产精品v日韩精品| 国产999视频| 免费足恋视频网站女王| 国产精品午夜国产小视频| 538在线视频二三区视视频| 好男人社区神马在线观看www| 两个人看的www在线| 星空无限传媒好闺蜜2|