《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 基于方面情感的層次化雙注意力網絡
基于方面情感的層次化雙注意力網絡
《信息技術與網絡安全》2020年第6期
宋 婷1,陳戰偉2
1.太原科技大學 計算機科學與技術學院,山西 太原030024; 2.中國移動通信集團山西有限公司,山西 太原030001
摘要: 基于深度學習的方面級情感分析,結合注意力機制的神經網絡模型取得較好的分類效果,但常用方法僅考慮單一層面注意力機制,且無法獲取句子間依賴關系。設計了一種層次化的雙注意力神經網絡模型用于方面級情感分析,針對特定方面引入方面目標的注意力機制以及文本上下文自注意力機制,獲取方面特征信息和句子的全局依賴信息;設計層次化GRU網絡,其中單詞層嵌入特定方面信息,獲取針對方面目標的句子內部特征信息,句子層網絡通過雙注意力機制和詞語層的輸入,獲取句子間的特征依賴信息,從而實現深層次的方面情感分類。在SemEval 2014兩個數據集和Twitter數據集上進行對比實驗,驗證了該方法的有效性,針對方面級情感,分類準確率均得到了有效提升。
中圖分類號: TP391
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2020.06.005
引用格式: 宋婷,陳戰偉. 基于方面情感的層次化雙注意力網絡[J].信息技術與網絡安全,2020,39(6):24-30.
Hierarchical double attention network for aspect sentiment analysis
Song Ting1,Chen Zhanwei2
1.School of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024,China; 2.China Mobile Communications Group Shanxi Co.,Ltd.,Taiyuan 030001,China
Abstract: Aspect-level sentiment analysis based on deep learning, and a neural network model combined with attention mechanisms achieve good classification results. But common methods only consider single-level attention mechanisms and cannot obtain inter-sentence dependencies. In this paper,a hierarchical dual attention neural network model for aspect-level sentiment analysis was designed. It introduces the attention mechanism of aspect targets for specific aspects, and the text context self-attention mechanism to obtain aspect characteristic information and global dependency information of sentences; designs Hierarchical GRU network, in which the word layer embeds specific aspect information to obtain the internal characteristic information of the sentence for the aspect target,and the sentence layer network uses the dual attention mechanism and the input of the word layer to obtain the feature-dependent information between sentences and to achieve a deep level aspect emotion classification. A comparison experiment was performed on the two SemEval 2014 datasets and the Twitter dataset to verify the effectiveness of the method. The classification accuracy rate for aspect-level emotions was effectively improved.
Key words : hierarchical;dual attention;aspect emotion;attention mechanism;GRU

    情感分析是自然語言處理任務之一,文本中針對某實體給出總體評價的同時,對于實體的不同屬性也會分別給出各自觀點,由此文本的方面級情感分析是情感分析的重要任務之一,實現對文本觀點更深層次的情感挖掘。如何利用自然語言處理現有技術從社交網絡大量信息中獲取文本的情感傾向,是方面情感分析的主要研究工作。

      方面級情感分析首先對方面詞進行提取,方面詞可以是一個單詞,或者是一個短語;接著針對提取出的不同方面分別獲取情感信息。例如:“Good food but dreadful service at that restaurant”,句中的評論實體是餐廳,分別對它的兩個方面即兩種屬性描述觀點,兩種屬性分別是food和service,相對應的情感極性分別是積極和消極。由此得出兩個方面情感極性可能相同,也可能相反。

      深度學習在自然語言處理領域被廣泛應用,深度神經網絡模型早期在機器翻譯、文本情感分類等任務中取得了比以往更好的效果。注意力機制的結合使神經網絡模型高度關注特定目標的特征信息,當前使用較多的結合注意力機制的神經網絡模型有卷積神經網絡(CNN)和循環神經網絡(RNN)。文獻[3]提出基于多注意力機制的CNN,計算詞向量、詞性、位置信息的注意力機制,結合卷積神經網絡,在不依賴外部知識的情況下獲取方面級情感極性。文獻[4]提出首先利用長短期記憶網絡(LSTM)獲取句子的上下文信息,再使用卷積神經網絡提取注意力獲得具體的句子表示,模型中嵌入了方面信息,取得較好的分類效果。基于注意力機制的CNN使用濾波器獲取文本特征,僅得到局部單詞間的依賴關系,未得到整體句子中所有單詞間關系。基于注意力機制的RNN、LSTM等循環神經網絡考慮前一時刻的狀態信息,對過往信息具有記憶功能,但文本中單詞間的依賴關系隨著距離的增大逐漸減弱。上述兩種情況均使用單一注意力模式。本文提出層次化雙注意力GRU網絡的方面級情感分析模型,主要貢獻如下:

      (1)提出采用雙注意力機制模式進行方面級情感分析,通過特定方面目標在句中的注意力機制和文本上下文自注意力機制,抽取方面特征信息和句子的全局依賴信息,從而深層次地獲取情感特征。

      (2)利用層次化的GRU網絡獲取句子內部和句子間的依賴關系。網絡下層嵌入特定方面信息,獲取了針對方面目標的局部特征信息,網絡上層通過雙注意力機制和詞語層的輸入,獲取針對特定方面整體文本的特征依賴信息。

      (3)在SemEval 2014兩個數據集和Twitter數據集上進行對比實驗,驗證了該方法的有效性,針對方面級情感,分類準確率均得到了有效提升。



本文詳細內容請下載http://www.jysgc.com/resource/share/2000003148


作者信息:

宋  婷1,陳戰偉2

(1.太原科技大學 計算機科學與技術學院,山西 太原030024;

2.中國移動通信集團山西有限公司,山西 太原030001)


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 高清一级做a爱免费视| 99精品国产三级在线观看| 日韩精品久久无码人妻中文字幕| 亚洲的天堂av无码| 福利小视频在线观看| 国产60部真实乱| 韩国电影中文字幕| 国产欧美在线观看视频| 2021国产麻豆剧果冻传媒入口| 大臿蕉香蕉大视频成人| 一区二区在线免费视频| 扒开双腿猛进入免费视频黄| 久久国产精久久精产国| 日韩视频在线观看| 亚洲av无码精品色午夜果冻不卡| 欧美激情一区二区三区四区| 亚洲色婷婷一区二区三区| 男女一边摸一边脱视频网站| 别揉我胸啊嗯奶喷了动态图| 翁想房中春意浓1-28| 国产一级第一级毛片| 青青国产成人久久91| 国产夜趣福利免费视频| 黑人video| 国产日韩欧美三级| 亚洲色图13p| 国产精品9999久久久久| 在线国产你懂的| 国产精品自产拍在线观看| 91精品国产品国语在线不卡| 在线免费看片a| 99久久99久久久精品久久| 大学生一级毛片免费看**| mm1313亚洲国产精品无码试看| 岛国在线播放v片免费| 一级做a爰片性色毛片刺激| 成Av免费大片黄在线观看| 三上悠亚日韩精品| 成人av鲁丝片一区二区免费| 中国老熟妇xxxxx| 性高朝久久久久久久|