《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > ESD電流波形的小波自適應(yīng)Kalman濾波去噪方法
ESD電流波形的小波自適應(yīng)Kalman濾波去噪方法
2018年電子技術(shù)應(yīng)用第10期
周 奎1,2,阮方鳴2,3,管 勝1,蘇 明3,王 珩3
1.貴州大學(xué) 大數(shù)據(jù)與信息工程學(xué)院,貴州 貴陽550025;2.北京東方計(jì)量測試研究所,北京100094; 3.貴州師范大學(xué) 大數(shù)據(jù)與計(jì)算機(jī)科學(xué)學(xué)院,貴州 貴陽550001
摘要: 為降低靜電放電電流信號的干擾噪聲,將小波分析與自適應(yīng)Kalman濾波算法結(jié)合用于ESD電流波形去噪分析。并將Adams預(yù)測校正算法用于人體-金屬模型ESD電流的數(shù)值計(jì)算,建立了相應(yīng)的加噪ESD電流信號模型,小波去噪在此模型上進(jìn)行去噪性能分析。針對實(shí)測ESD電流波形,使用小波閾值去噪方法對ESD電流波形進(jìn)行預(yù)處理,獲得較為平穩(wěn)的觀測數(shù)據(jù);再根據(jù)觀測數(shù)據(jù)的信息,采用Sage-Husa的自適應(yīng)Kalman濾波算法對小波預(yù)處理后的數(shù)據(jù)做優(yōu)化處理。結(jié)果顯示,基于小波分析和自適應(yīng)Kalman濾波算法可以有效降低實(shí)測ESD電流波形的干擾噪聲。
中圖分類號: TN911.72;O441.1
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.180921
中文引用格式: 周奎,阮方鳴,管勝,等. ESD電流波形的小波自適應(yīng)Kalman濾波去噪方法[J].電子技術(shù)應(yīng)用,2018,44(10):83-87.
英文引用格式: Zhou Kui,Ruan Fangming,Guan Sheng,et al. Denoising method of ESD current waveform based on wavelet and adaptive Kalman filtering[J]. Application of Electronic Technique,2018,44(10):83-87.
Denoising method of ESD current waveform based on wavelet and adaptive Kalman filtering
Zhou Kui1,2,Ruan Fangming2,3,Guan Sheng1,Su Ming3,Wang Heng3
1.School of Big Data and Information Engineering, Guizhou University,Guiyang 550025,China; 2.Beijing Oriental Institute of Measurement and Test,Beijing 100094,China; 3.School of Big Data and Computer Sciences,Guizhou Normal University,Guiyang 550001,China
Abstract: In order to reduce the interference noise of ESD current signal, wavelet analysis and adaptive Kalman filter are used in the study of ESD current waveform denoising. The numerical solutions of ESD current of human body-metal model are computed by the Adams prediction-calibration algorithm,and a corresponding noisy ESD current signal model is established. The wavelet denoising method performs denoising performance analysis on this model. Aiming at the measured ESD current waveform, the wavelet threshold denoising method is used to preprocess the ESD current waveforms, and obtain more stable observation data. According to the information of the observed data, the adaptive Kalman filter algorithm proposed by Sage-Husa is used to optimize the data processed the wavelet pretreatment data. The results show that the wavelet analysis and adaptive Kalman filter algorithm can effectively reduce the interference noise of the measured ESD current waveform.
Key words : ESD;current waveform;Adams prediction-correction algorithm;wavelet denoising;adaptive Kalman filter

0 引言

    在靜電放電(Electrostatic Discharge,ESD)抗擾度試驗(yàn)中,ESD模擬器易受機(jī)械振動、環(huán)境變化以及設(shè)備自身產(chǎn)生的輻射場等干擾,這些干擾最終會耦合到測量電纜中形成高頻振蕩噪聲[1-2]。雖然實(shí)驗(yàn)中采用了標(biāo)準(zhǔn)IEC61000-4-2規(guī)定的法拉第籠等屏蔽措施[3],但仍存在無法消除的噪聲干擾。

    針對實(shí)測ESD電流波形存在干擾噪聲的問題,本文將小波分析與自適應(yīng)卡爾曼(Kalman)濾波算法結(jié)合用于ESD電流波形的去噪分析。根據(jù)人體-金屬模型(Human Body-Metal Model,HMM)的放電電流構(gòu)建了染噪的ESD電流信號模型,小波去噪方法在該模型上進(jìn)行去噪性能分析,以確定適于ESD電流波形去噪的小波函數(shù)和分解層次。實(shí)際應(yīng)用中,ESD電流波形在小波閾值去噪的基礎(chǔ)上,引入自適應(yīng)Kalman濾波算法做優(yōu)化處理,從而更有效地實(shí)現(xiàn)降噪。

1 ESD電流波形去噪方法

    ESD電流波形去噪方法的主要思想是利用小波分析方法對ESD電流信號進(jìn)行多層分解,有效提取噪聲信息,對包含噪聲信息的高頻小波系數(shù)使用限閾值法處理,小波重構(gòu)獲得相對穩(wěn)定的ESD電流觀測數(shù)據(jù)。再根據(jù)ESD電流觀測數(shù)據(jù)的信息,使用自適應(yīng)Kalman濾波算法做優(yōu)化處理[4]

1.1 小波閾值去噪方法

    小波去噪方法種類很多,本文采用的是實(shí)現(xiàn)簡單且計(jì)算量較小的閾值去噪方法[5],該方法步驟如下:

    (1)一維信號的小波變換:選擇合適的小波函數(shù)和分解層次,對ESD電流信號進(jìn)行離散小波變換。

    (2)小波系數(shù)限閾值處理:噪聲信息主要集中在高頻小波系數(shù)中,對各層高頻小波系數(shù)做限閾值處理。

    (3)一維信號的小波重構(gòu):由小波變換后的尺度系數(shù)和閾值法處理后的小波系數(shù)重構(gòu)出去噪信號。

    通常使用的閾值處理方法分為以下兩種[6]

ck2-1.2-s1.gif

    常用的閾值獲取方法有啟發(fā)式閾值、極大極小原則閾值、固定閾值和Stein無偏估計(jì)原則閾值4種。文獻(xiàn)[6]中將小波閾值去噪方法用于ESD電流波形的去噪分析,結(jié)果表明:使用Stein無偏估計(jì)原則閾值對ESD電流波形的去噪效果較好。

1.2 自適應(yīng)Kalman濾波

    SAGE A P和HUSA G W提出的自適應(yīng)濾波算法具有原理簡單、實(shí)時性好的特點(diǎn)[7]。利用Sage-Husa的極大后驗(yàn)估值器對未知噪聲進(jìn)行統(tǒng)計(jì)估計(jì),將其遞推形式與Kalman濾波算法相結(jié)合可以構(gòu)成噪聲統(tǒng)計(jì)值不斷修正的自適應(yīng)Kalman濾波算法。簡化的Sage-Husa自適應(yīng)Kalman濾波算法描述如下:

    ck2-gs1-7.gif

ck2-gs8.gif

2 加噪ESD電流信號模型建立

    為了確定小波閾值去噪方法的效果,可以使用ESD電路模型構(gòu)建放電回路,利用數(shù)值解法計(jì)算出符合標(biāo)準(zhǔn)規(guī)范的ESD電流數(shù)據(jù),通過疊加隨機(jī)高斯白噪聲,模擬實(shí)際環(huán)境中的靜電放電電流信號。

2.1 考慮寄生參量的HMM-ESD電流數(shù)值計(jì)算

    標(biāo)準(zhǔn)IEC61000-4-2中給出的ESD事件源于人體靜電起電的模擬,可以使用人體ESD電路模型來構(gòu)建ESD發(fā)生器的放電電路[8]。這里采用了考慮寄生參量的HMM-ESD電路[9],構(gòu)建的接觸式放電回路,如圖1所示。

ck2-t1.gif

    根據(jù)HMM-ESD回路特性,可以獲得能夠描述該電路模型回路特性的一階微分方程組:

    ck2-gs9.gif

其中,uB(t)、uP(t)、uHA(t)分別對應(yīng)電容CB、CP、CHA的電壓;iB(t)、iHA(t)分別對應(yīng)電感LB、LHA的電流。儲能元件初始狀態(tài)已知,則可以使用常微分方程的數(shù)值解法對其進(jìn)行求解。

    常微分方程的數(shù)值解法通常有歐拉(Euler)方法、龍格-庫塔(Runge-Kutta)方法[10-11]和阿當(dāng)姆斯(Adams)方法等。本文使用的是計(jì)算量小且精度較高的Adams預(yù)測校正方法,考慮Adams預(yù)測校正算法是四步法,需要借助單步的Runge-Kutta算法預(yù)測最初4個節(jié)點(diǎn)的值[12]。針對HMM-ESD回路特性方程組的四階Runge-Kutta算法描述如下:

ck2-gs10-12.gif

    將Runge-Kutta方法計(jì)算出的最初4個節(jié)點(diǎn)ym(0)、ym(1)、ym(2)、ym(3)的值作為初始參數(shù)傳遞給Adams預(yù)測校正算法。再由4步的顯式Adams公式做預(yù)測,3步的隱式Adams公式作校正,依次遞推計(jì)算后續(xù)節(jié)點(diǎn)的值。

    回路元件參數(shù)設(shè)定:CB=141 pF,RB=330 Ω,LB=0.12 μH,CP=1.5 pF,CHA=8 pF,RHA=40 Ω,LHA=2.5 μH。儲能元件初始狀態(tài):uB(0)=6 000 V,uP(0)=uHA(0)=0 V,iB(0)=iHA(0)=0 A。取步長h=0.025 ns,數(shù)值計(jì)算獲得HMM-ESD電流波形,如圖2所示。該波形不僅符合標(biāo)準(zhǔn)參數(shù)規(guī)范,而且還能很好地反映實(shí)測過程中的寄生振蕩現(xiàn)象,40 GHz采樣頻率的6 kV實(shí)測ESD電流波形如圖3所示。

ck2-t2.gif

ck2-t3.gif

2.2 HMM-ESD電流信號疊加噪聲

    含噪ESD電流信號的模型表示如下:

    ck2-gs13.gif

式中,s(n)采用基于Adams預(yù)測校正方法計(jì)算的HMM-ESD電流數(shù)值解的4 096個采樣點(diǎn)作為無噪信號;e(n)采用信噪比為19 dB的高斯白噪聲信號;y(n)為無噪原始信號與噪聲信號的合成信號,其電流波形如圖4所示。

ck2-t4.gif

    小波去噪方法在此模型上進(jìn)行,使用信噪比(Signal Noise Ratio,SNR)和均方誤差(Mean Squared Error,MSE)作為評估去噪方法有效性的指標(biāo):

    ck2-gs14-15.gif

其中,x(n)是去噪處理后的數(shù)據(jù)。去噪效果評價準(zhǔn)則是信噪比SNR越大,均方誤差MSE越小,去噪效果就越好。

3 小波去噪實(shí)驗(yàn)數(shù)據(jù)分析

    加噪ESD電流波形的小波去噪分析中,分別使用Daubechies、 Coieflet、Symlets和Biorthogonal系小波對加噪HMM-ESD電流波形進(jìn)行2~8層分解,統(tǒng)一采用Stein無偏估計(jì)原則閾值和軟門限閾值方式處理后,計(jì)算小波去噪后信號較純凈信號的SNR和MSE。為了便于觀察小波函數(shù)階次和分解層次對去噪性能的影響,圖5給出了Symlets小波系不同階次小波函數(shù)和分解層次下SNR和MSE的變化趨勢。

ck2-t5.gif

    圖5(a)展示了Symlets小波去噪分析的SNR趨勢,總體上看,隨著sym小波函數(shù)階次N的增加,SNR增大,但是較高階次的小波函數(shù)間的去噪性能差距并不明顯;分解層次多集中在4~6層附近時,SNR相對較大。圖5(b)展示了Symlets小波去噪分析的MSE趨勢,總體上看, MSE與 SNR呈相反的變化趨勢。因此,在實(shí)測ESD電流波形的小波去噪處理中,應(yīng)盡量選取高階次的小波函數(shù)和4~6層分解進(jìn)行小波分析。為了獲悉不同小波系函數(shù)對加噪ESD電流波形的降噪效果,表1給出了各小波系中去噪性能較好的部分性能參數(shù)。

ck2-b1.gif

    表1中,小波函數(shù)db9、sym4、sym6、sym7對應(yīng)的信噪比在 48.6 dB以上,相對于其他小函數(shù)去噪效果較好。其中,sym7小波函數(shù)去噪效果最佳。整體上看,使用Symlets系列小波函數(shù)對含噪ESD電流信號做去噪分析較為適宜。

4 實(shí)測ESD電流波形去噪

    針對圖3所示40 GHz采樣頻率的6 kV ESD電流波形,選取sym7小波函數(shù)作為母小波對其進(jìn)行5層分解,分解后的近似信息(A5)和細(xì)節(jié)信息(D1~D5)如圖6所示。

ck2-t6.gif

    圖6中,第一層小波系數(shù)(D1)幅值分布較為均勻,基本不含有用信息。因此,可以將該層小波系數(shù)置零,其他各層小波系數(shù)采用Stein無偏估計(jì)原則閾值做軟門限閾值處理。小波閾值去噪處理后的ESD電流波形如圖7所示,與圖3所示的實(shí)測ESD電流波形相比,噪聲毛刺明顯減少。

ck2-t7.gif

    使用Sage-Husa自適應(yīng)Kalman濾波算法對小波預(yù)處理后的ESD電流數(shù)據(jù)做優(yōu)化處理,獲得如圖8所示電流波形。該電流波形與圖7小波去噪后的ESD電流波形相比,電流波形中寄生振蕩的噪聲有所削減,整體光滑度更好。

ck2-t8.gif

5 結(jié)論

    本文將小波分析與自適應(yīng)卡爾曼濾波算法相結(jié)合,應(yīng)用于ESD電流波形的去噪分析。并使用Adams預(yù)測校正算法結(jié)合Runge-Kutta算法數(shù)值計(jì)算HMM-ESD電流值,建立了含噪ESD電流信號模型。通過統(tǒng)一閾值選取方式和閾值處理方法,分析了不同小波函數(shù)在不同分解層次的去噪性能。結(jié)果顯示,較高階次的小波函數(shù)在4~6層分解時對ESD電流信號的去噪效果較好。對于實(shí)測ESD電流波形,在小波閾值去噪的基礎(chǔ)上,引入Sage-Husa自適應(yīng)Kalman濾波算法做優(yōu)化處理,獲得了更好的去噪效果。

參考文獻(xiàn)

[1] 陳硯橋,劉尚合,武占成,等.靜電放電電磁脈沖的實(shí)驗(yàn)研究[J].強(qiáng)激光與粒子束,1999,11(3):359-362.

[2] 賀其元,劉尚合,孫國至,等.ESD發(fā)生器開關(guān)動作對抗擾度試驗(yàn)的影響[J].高電壓技術(shù),2007,33(6):93-96.

[3] IEC 61000-4-2,Electromagnetic compatibility(EMC)-Part 4-2:Testing and measurement techniques-Electrostatic discharge immunity test[S].2008.

[4] 李田科,劉輝,王亮,等.基于小波變換的自適應(yīng)Kalman濾波算法研究[J].兵工自動化,2013,32(1):32-35.

[5] 杜浩藩,叢爽.基于MATLAB小波去噪方法的研究[J].計(jì)算機(jī)仿真,2003,20(7):119-122.

[6] 陳翔,魏明,王雷,等.人體-金屬模型靜電放電電流波形小波去噪[J].高壓電器,2010,46(8):14-17.

[7] SAGE A P,HUSA G W.Adaptive filtering with unknown prior statistics[C].Proceedings of Joint Automatic Control Conference,1969:760-769.

[8] RUNG F M,GAO Y G,F(xiàn)UJIWARA O.Voltage dependence property of parameters for human body discharge in air through a small metal rod[J].The Journal of China Universities of Posts and Telecommunications,2008,15(4):86-90.

[9] 汪軻,汪金山,汪曉東.基于5階HMM-ESD電流表達(dá)式及頻譜分析[C].第二十九屆中國控制會議論文集,2010:890-893.

[10] 朱長青,劉尚合,魏明.ESD電流的解析表達(dá)式與數(shù)值解[J].高電壓技術(shù),2005,31(7):22-24.

[11] 朱長清,劉尚合,魏明.靜電放電模擬器放電回路的設(shè)計(jì)[J].儀表技術(shù)與傳感器,2004(3):31-33.

[12] ZHOU K,RUAN F M.HMM-ESD current calculation based on adams prediction-calibration method[C].The 5th International Symposium on Electromagnetic Compatibility Proceedings,2017:261-265.



作者信息:

周  奎1,2,阮方鳴2,3,管  勝1,蘇  明3,王  珩3

(1.貴州大學(xué) 大數(shù)據(jù)與信息工程學(xué)院,貴州 貴陽550025;2.北京東方計(jì)量測試研究所,北京100094;

3.貴州師范大學(xué) 大數(shù)據(jù)與計(jì)算機(jī)科學(xué)學(xué)院,貴州 貴陽550001)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
亚洲精品一区在线观看| 久久九九免费视频| 欧美一区二区播放| 亚洲私人影院| 亚洲美女黄色| 亚洲精品美女在线观看播放| 亚洲福利专区| 亚洲激情另类| 亚洲国产成人91精品| 激情综合色丁香一区二区| 国产一区导航| 国内精品久久久久久| 国产午夜精品美女视频明星a级| 国产精品嫩草久久久久| 国产精品视频九色porn| 欧美性猛交视频| 国产精品国码视频| 国产精品扒开腿做爽爽爽视频| 欧美日韩一区二区三区四区在线观看 | 午夜精品久久久久久久白皮肤| 亚洲无亚洲人成网站77777| 一本大道久久a久久综合婷婷| 亚洲精品乱码久久久久久蜜桃麻豆| 亚洲黄色免费| 日韩午夜免费视频| 亚洲视频免费看| 亚洲欧美日本国产有色| 欧美呦呦网站| 亚洲黄色尤物视频| 日韩一区二区高清| 亚洲欧美日韩视频一区| 欧美一区二区观看视频| 久久久久久久尹人综合网亚洲| 久久视频国产精品免费视频在线| 欧美v日韩v国产v| 欧美日韩精品是欧美日韩精品| 国产精品成人国产乱一区| 国产欧美一区二区三区另类精品| 国产资源精品在线观看| 亚洲人成毛片在线播放| 一区二区三区国产精华| 午夜国产精品影院在线观看| 久久成人精品无人区| 亚洲精品乱码久久久久久按摩观| 国产精品99久久久久久久久久久久| 亚洲免费影视第一页| 久久久久久久尹人综合网亚洲| 欧美成人小视频| 国产精品白丝jk黑袜喷水| 国产一区二区三区日韩| 亚洲日本电影| 亚洲女人天堂成人av在线| 亚洲国产另类久久久精品极度| 亚洲香蕉成视频在线观看| 久久久国产成人精品| 欧美精品久久久久久久| 国产欧美日韩麻豆91| 在线国产日韩| 亚洲一区精品视频| 亚洲国产高清高潮精品美女| 亚洲天堂成人在线视频| 久久亚洲精品一区| 欧美日韩一区二区三区视频| 好吊色欧美一区二区三区四区 | 欧美成人在线网站| 国产精品一区二区三区四区| 亚洲国产成人av| 亚洲欧美在线看| 99精品视频免费| 久久精品二区亚洲w码| 欧美日韩你懂的| 一区在线观看| 亚洲欧美怡红院| 99视频一区二区三区| 久久久爽爽爽美女图片| 欧美性大战xxxxx久久久| 伊人精品视频| 亚洲欧美另类国产| 一本大道久久a久久精二百| 久久亚洲一区| 国产九区一区在线| 99精品久久久| 亚洲精品欧美精品| 久久美女艺术照精彩视频福利播放| 欧美日韩小视频| 在线电影国产精品| 欧美一站二站| 香港久久久电影| 欧美日韩久久久久久| 亚洲国产高清一区| 欧美中文字幕不卡| 午夜精品久久久久久久久| 欧美日韩色综合| 亚洲黄色三级| 亚洲欧洲日产国产综合网| 久久精品国产2020观看福利| 国产精品久久久久久久久借妻 | 欧美一区二区三区日韩视频| 亚洲欧美资源在线| 欧美日韩一区二区视频在线观看 | 亚洲精品视频免费观看| 亚洲人成亚洲人成在线观看图片 | 亚洲午夜精品在线| 亚洲天堂av在线免费| 欧美伦理在线观看| 亚洲黄色免费网站| 亚洲精品美女在线| 欧美成人日本| 亚洲福利国产| 亚洲日本中文字幕区| 欧美.www| 亚洲国产高清aⅴ视频| 亚洲国产日韩精品| 久久躁日日躁aaaaxxxx| 国产一区二区三区在线观看免费| 亚洲欧美中文日韩在线| 欧美一级片在线播放| 国产精品色在线| 亚洲欧美日韩一区二区三区在线| 亚洲一区欧美一区| 国产精品久久久999| 亚洲图片在线观看| 欧美一级二区| 国产亚洲精品aa午夜观看| 欧美一区久久| 久久露脸国产精品| 国产自产女人91一区在线观看| 欧美自拍丝袜亚洲| 老司机精品久久| 亚洲国产精品一区二区三区| 日韩午夜高潮| 欧美偷拍一区二区| 亚洲欧美成人一区二区在线电影 | 亚洲欧美综合一区| 国产欧美精品xxxx另类| 欧美在现视频| 蜜桃av噜噜一区| 亚洲日韩欧美视频一区| 中文欧美在线视频| 国产精品久久久久9999高清| 性久久久久久久| 美女在线一区二区| 亚洲剧情一区二区| 亚洲欧美区自拍先锋| 国产亚洲激情在线| 亚洲日本在线视频观看| 欧美日韩理论| 亚洲男人的天堂在线| 久久综合九色综合欧美狠狠| 亚洲二区在线观看| 亚洲在线播放| 国内精品久久久久久久果冻传媒 | 欧美日韩一区三区四区| 亚洲视频1区| 久久www免费人成看片高清| 伊人成人在线| 制服诱惑一区二区| 国产日韩欧美综合| 最新日韩av| 欧美午夜视频一区二区| 欧美一级午夜免费电影| 欧美电影美腿模特1979在线看| 一区二区三区高清在线| 久久免费高清| 99国产精品久久久久久久成人热| 午夜日韩福利| 1024成人| 亚洲欧美日本国产专区一区| 激情文学综合丁香| 亚洲永久精品国产| 国产一区二区久久久| 亚洲伦理久久| 国产日韩在线亚洲字幕中文| 亚洲精选在线观看| 国产日韩精品在线| 99精品免费| 国产一区自拍视频| 亚洲婷婷免费| 狠狠操狠狠色综合网| 亚洲午夜精品一区二区| 黄色一区三区| 亚洲尤物在线| 亚洲电影在线看| 久久av一区二区三区| 日韩视频在线一区二区三区| 久久久久久久久久看片| 一区二区欧美日韩| 欧美大胆成人| 欧美一区中文字幕| 欧美午夜视频| 日韩视频在线永久播放| 国产一区二区三区四区三区四| 亚洲视频在线观看网站| 在线观看欧美亚洲| 久久精品国产精品亚洲| 亚洲作爱视频| 欧美激情91| 久久精品国产亚洲精品| 国产精品性做久久久久久| 99国产精品99久久久久久|