《電子技術應用》
您所在的位置:首頁 > 電源技術 > 設計應用 > 一種自適應的主動移頻孤島檢測方法
一種自適應的主動移頻孤島檢測方法
2015年電子技術應用第12期
楊恢東,吳 浪,李心茹,王河深
暨南大學 信息科學技術學院,廣東 廣州510632
摘要: 針對正反饋主動移頻法存在檢測速度不夠快,對輸出電流質量影響較大的問題,提出了一種自適應的正反饋主動移頻檢測方法。該方法采用新的初始截斷系數,根據公共點的頻率化率實時地調整正反饋系數,縮短了檢測時間,減小了檢測盲區。同時考慮了電網的波動,避免引入的頻率差對輸出電流質量的影響。通過相位理論分析和MATLAB/Simulink仿真,驗證了該方法的有效性及優越性。
中圖分類號: TM712
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.2015.12.017

中文引用格式: 楊恢東,吳浪,李心茹,等. 一種自適應的主動移頻孤島檢測方法[J].電子技術應用,2015,41(12):65-68.
英文引用格式: Yang Huidong,Wu Lang,Li Xinru,et al. A self-adapting active frequency-drift islanding detection method[J].Application of Electronic Technique,2015,41(12):65-68.
A self-adapting active frequency-drift islanding detection method
Yang Huidong,Wu Lang,Li Xinru,Wang Heshen
School of Information Science and Technology, Jinan University,Guangzhou 510632,China
Abstract: Based on the islanding detection algorithm of active frequency-drift with positive feedback method, a self-adapting method is presented to surmount the disadvantages of the former. The self-adapting algorithm used the new initial chopper factor to replace the old and dynamically adjust the positive feedback parameter according to the rate of change of voltage frequency of the point of common coupling(PCC). The non-detection zone(NDZ) is reduced, and the testing time is shortened. Considering the power grid voltage fluctuations, it decreased the influence on output current. The phase of theoretical analysis and simulation results show that the self-adapting method is feasible and advantage.
Key words : islanding detection;active frequency-drift;chopper factor;self-adaption;power grid voltage fluctuations

    

0 引言

    隨著能源的不斷消耗,太陽能、燃料電池等可再生新能源在不斷地被開發和利用,其中分布式發電是利用太陽能的發展方向,代表了21世紀最具吸引力的能源技術[1]。光伏并網發電系統將太陽能電池產生的直流電逆變后輸送到電網,這需要并網系統有各種完善的保護措施。而保護措施除了一般的電流、電壓和頻率的檢測保護外,還需要考慮一種特殊的故障狀態,即孤島效應。孤島效應是指當電網由于電氣故障或自然因素等原因中斷供電時,光伏并網系統仍然通過逆變器向周圍的負載供電,從而與負載形成了一個電網無法控制的自給供電孤島的現象[2]。孤島現象會嚴重影響電力系統的安全正常運行,不僅會損壞用戶接入的并網電力裝置,而且可能會危及到線路維修人員的人身安全。可見,對于一個并網系統必須具備孤島檢測的能力。

    通常孤島檢測方法可以分為三大類,即遠程檢測法、本地被動檢測法和本地主動檢測法[3]。遠程檢測法基于通信手段,依賴于分布式系統與電網之間的通信信號檢測是否發生孤島。被動檢測法通過檢測電網斷電時電壓幅值、頻率、相位等系統參數是否出現異常來判斷孤島。主動檢測法通過在輸出電流中注入擾動,驅使系統參數快速超出閾值來檢測孤島[4-5]。三種檢測法中以主動檢測法使用最為廣泛。主動檢測法中使用較多是移頻類檢測法,包括主動移頻法(Active Frequency-Drift,AFD)[6]正反饋主動移頻法(Active Frequency-Drift with Positive Feedback,AFDPF)[7]、滑模移頻法(Slide- Mode Frequency Shift,SMS)[8]等。AFD通過對逆變器輸出電流頻率施加一定的擾動,使頻率超出閾值來檢測孤島[9]。AFDPF則在主動移頻的基礎上運用正反饋使公共耦合點的電壓頻率加速偏移來檢測孤島。傳統的方法都是采用固定的截斷系數cf和反饋系數K,不能跟隨負載的性質來改變,只能向單一方向偏移,缺少靈活性。同時孤島檢測的盲區偏大,且未考慮電網的正常波動帶來的影響。

    針對以上問題,提出了一種自適應的正反饋主動移頻檢測方法,運用相位原理對其進行了理論分析,同時基于負載品質因數Qf與諧振頻率fo坐標系描述該方法的檢測盲區,最后通過MATLAB/Simulink仿真驗證了算法的可行性和優越性。

1 AFD和AFDPF原理概述

1.1 AFD原理

    AFD的原理是以PCC點處電壓頻率作為光伏逆變器輸出電流的參考頻率,并在其中添加擾動,使得逆變器輸出電流波形有輕微的畸變。孤島發生時, PCC電壓頻率發生偏移,頻率進行偏移累計,當超出正常允許的閾值范圍時觸發孤島保護動作。圖1為孤島檢測等效電路圖。

ck5-t1.gif

    當電網正常并網時,受制于電網的鉗制作用,引入的擾動并不會使PCC點電壓頻率產生偏移。當電網斷開時,電網的鉗制作用不再存在,擾動促使PCC點電壓頻率發生偏移直至超出閾值。圖2所示為參考電流和PCC電壓的波形及相位圖[10]。圖中tz為輸出電流過零點持續時間間隔,Tv為PCC點電壓周期。截斷系數cf定義為電流過零點持續時間間隔與半個電壓周期Tv之比[11]

    ck5-gs1.gif

ck5-t2.gif

    主動移頻法引入的擾動相角θAFD為: 

    ck5-gs2.gif

    在研究孤島檢測技術時,通常采用RLC電路來模擬本地負載[12]。負載在任意頻率f的負載阻抗角θload可表示為:

    ck5-gs3.gif

其中:Qf為負載的品質因數,fo為諧振頻率。

    當孤島發生并達到穩態時,有θloadAFD=0,通過相角計算,即由式(2)和式(3)可得[13]

    ck5-gs4.gif

式中:fis為孤島形成后公共點的頻率。

    得出負載諧振頻率fo與孤島頻率fis函數關系:

    ck5-gs5.gif

    將頻率動作保護閾值(50±0.5 Hz)代入式(5)即可畫出基于負載品質因數Qf與諧振頻率fo坐標系的孤島檢測盲區圖。

1.2 AFDPF原理

    傳統的AFDPF方法基于主動移頻法,在頻率偏移的基礎之上引入了正反饋加速PCC電壓頻率偏移出正常閾值范圍。AFDPF方法加快了檢測速度,同時一定程度上減小了檢測盲區。其中引入正反饋后的截斷系數cf為:

    ck5-gs6.gif

式中,cfo為初始截斷系數,K為反饋增益系數,f為公共點電壓頻率,fg為電網的額定頻率。

    將式(6)代入式(2)得到正反饋移頻法引入的擾動相角:

    ck5-gs7.gif

    將θAFDPF代入式(5),即可得到正反饋主動移頻方法孤島檢測盲區。

2 自適應的AFDPF

    在傳統AFDPF方法中,可能出現初始截斷系數和擾動方向不一致的情況,其會使得擾動時間增加。傳統的截斷系數是由K(f-fg)和初始截斷系數cfo疊加構成的,其中只有K(f-fg)在增加。若將cfo替換成一個很小但隨著f逐漸增加的變量,顯然可以使檢測時間更短,盲區也更小[14]。傳統方法中的K值是固定的,不能夠根據負載狀態進行改變,因此引入符號函數,且依據PCC電壓頻率化率實時地調整正反饋系數。同時,電網在正常狀態下會存在波動,該波動引起的PCC點電壓頻率與電網電壓頻率偏差將會影響輸出電流的質量。GB/T15945-1995中規定,電力系統正常的頻率偏差允許值為0.2 Hz,而我國電力系統的實際情況是基本保持在不大于0.1 Hz的范圍之中。因此針對上述問題提出如下改進:

    ck5-gs8-10.gif

式中:a、b為調整系數,為了使擾動較小,取a=0.505,則初始截斷系數等效為0.01,b取1.1,使得k·bTime(Δε(n)<0)可以在k值基礎上快速增大(雖然K值越大,盲區越小,但是過大的K值會使得輸出電流質量變差,一般取0.07左右即可[9]);sign(f-fg)為f-fg的符號函數;k為初始反饋系數;Δε(n)為頻率變化率的差,定義Δε(n)=Δfn-Δfn-1;Δfn為相鄰周期的頻率變化率,定義為Δfn=fn-fn-1; fn為第n個周期PCC的電壓頻率;Time(Δε(n)<0)為|fn-fg|>0.1后,Δε(n)<0出現的次數。

    將自適應AFDPF中的cf代入式(7)和式(5)即可得到自適應的正反饋主動移頻下負載諧振頻率fo與孤島頻率fis的孤島檢測盲區圖,如圖3所示。圖中曲線包圍的部分為孤島檢測的盲區,1號線包圍區域為AFD法的孤島檢測盲區,由于cf是固定不變的,盲區范圍也固定不變,無法減小;2號線為傳統AFDPF方法的檢測盲區,由式(5)可知通過調節正反饋系數K值可以改變cf來調整fo,即改變了檢測盲區,但是由于K值固定,檢測盲區是一定的;3、4號線包圍區域為不同時刻的孤島檢測盲區,通過檢測PCC點電壓頻率來調整截斷系數和正反饋系數,從而可以不斷減小檢測盲區。

ck5-t3.gif

    當|f-fg|≤0.1時,采用很小的初始截斷系數,避免因為電網波動而影響輸出電流的質量。當|f-fg|>0.1時,cfo(f)會隨著PCC點頻率與額定頻率的頻率差而調整,同時由于引入了頻率差的符號函數,避免了負載的諧振頻率與擾動方向不一致的情況。如果相鄰周期的頻率變化率出現下降,則每下降一次,Time(Δε(n)<0)就會加1,k·bTime(Δε(n)<0)就會在k的基礎上指數增加,直到Δε(n)>0。通過這種方式可以確保當PCC電壓頻率發生頻移時,頻率快速增加并超出閾值,從而檢測出孤島狀態。

3 仿真分析

    本文在MATLAB/Simulink中進行了仿真,對自適應的AFDPF方法進行驗證。搭建5 kW單相光伏并網系統,采用直流電壓源代替太陽能電池板,通過逆變器與電網連接。表1為系統仿真參數。

ck5-b1.gif

    整個系統仿真時間持續0.5 s,其中0.2 s為孤島發生時刻。圖4所示為傳統AFDPF方法在功率匹配且負載諧振頻率等于電網額定頻率的最差情況下的仿真結果。其中RLC并聯負載參數為:R=6.1 Ω,L=7.65 mH,C=1324 μF,負載品質因數為2.5,LC諧振頻率fo=50 Hz。為了方便觀察,電壓幅值縮小為1/4。結果顯示在前0.2 s內,逆變器輸出電流頻率與公共點的電壓頻率同步。當電網斷開時,由于算法中初始截斷系數固定,擾動方向單一,PCC電壓頻率先減小后再增大。頻率向上偏移達到上限保護閾值時,系統停止工作,輸出電流為零,而電壓由于RLC并聯負載中存在電容和電感器件而逐漸衰減、震蕩至0。在0.338 s時,系統檢測出孤島狀態,整個過程耗時0.138 s。

ck5-t4.gif

    圖5為自適應的正反饋主動移頻方法在相同工況下的仿真圖,算法參數為:a=0.505,b=1.1,k=0.07。在前0.2 s內,因為|f-fg|頻率差小于0.1,cf的擾動采用很小的值,避免了因為電網波動引入擾動而影響輸出電流的質量。當0.2 s電網斷開時,由于引入了sign(f-fg)符號函數,系統會根據頻率偏移的方向改變,PCC點電壓頻率與電網額定的頻率差在較小的cf擾動下逐步增加到0.1 Hz。在系統檢測到|f-fg|>0.1后,算法中的 k·bTime(Δε(n)<0)會根據檢測的PCC電壓頻率變化率來調整總反饋系數,使頻率加速偏移。在0.282 s時,PCC點電壓頻率達到頻率上限,系統檢測出孤島。整個檢測過程耗時0.082 s,較傳統AFDPF方法縮短了0.056 s,遠遠滿足孤島檢測2 s的要求[15-16]。圖6為傳統AFDPF方法和自適應的AFDPF方法的總諧波失真(Total Harmonic Distortion,THD)對比圖。自適應AFDPF方法的THD為2.57%,傳統AFDPF方法的THD為3.45%,自適應AFDPF方法較傳統AFDPF方法明顯減小。

ck5-t5.gif

ck5-t6.gif

4 結束語

    針對傳統正反饋主動移頻法中截斷系數以固定初始截斷系數和反饋系數擾動,以及電網波動影響電能質量等不足,提出了一種自適應的正反饋主動移頻法。自適應的AFDPF方法在原AFDPF的基礎上,將截斷系數替換成微小變化的量,且根據公共點電壓頻率變化率自動改變正反饋的大小,加速頻率偏移。仿真表明,該自適應的正反饋主動移頻法較傳統的AFDPF方法縮短了檢測時間和減小了檢測盲區,同時一定程度上避免了電網波動對輸出電流的影響。

參考文獻

[1] 楊海柱,金新民.基于正反饋頻率的光伏并網逆變器的反孤島控制[J].太陽能學報,2005,26(3):409-412.

[2] 郭小強,趙清林,鄔偉揚.光伏并網發電系統孤島檢測技術[J].電工技術學報,2007,22(4):157-162.

[3] 曾議,吳政球,劉楊華,等.分布式發電系統孤島檢測技術[J].電力系統及其自動化學報,2009,21(3):106-110.

[4] 劉芙蓉,康勇,段善旭,等.主動頻移式孤島檢測方法的參數優化[J].中國電機工程學報,2008,28(1):95-99.

[5] LOPES L A C,SUN H.Performance assessment of active frequency drifting islanding detection methods[J].IEEE Transactions on Energy Conversion,2006,21(1):171-180.

[6] 陳衛民,陳國呈,吳春華,等.基于分布式并網的新型孤島檢測研究[J].電工技術學報,2007,22(8):114-118.

[7] 程啟明,王映斐,程尹曼,等.分布式發電并網系統中的孤島檢測方法的綜述研究[J].電力系統保護與控制,2011,39(6):147-154.

[8] SMITH G A,ONIONS P A,INFIELD D G.Predicting islanding operation of grid connected PV inverters[J].IEE Proc Electr.Power Appl.,2000,147(1):1-6.

[9] 劉方銳,余蜜,張宇,等.主動移頻法在光伏并網逆變器并聯運行下的孤島檢測機理研究[J].中國機電工程學報,2009,29(12):47-51.

[10] YU B,JUNG Y,SO J.A robust anti-islanding method for grid-connected photovoltaic inverter[C].IEEE 4th Photovoltaic Energy Conversion,2006:2242-2245.

[11] 張瑞葉,張少如,王平軍,等.一種新的主動孤島檢測法[J].電力系統保護與控制,2014,42(15):74-79.

[12] Evaluation of islanding detetion methods for photovoltaic utility-interactive power systems[R]. IEV-PVPS T5-09,2002.

[13] LOPES L A C,SUN H.Performance assessment of active frequency drifting islanding detection methods[J].IEEE Transactions on Energy Conversion,2006,21(1):171-180.

[14] 王一江,謝樺,梁建鋼.一種改進的正反饋主動移頻孤島檢測法的研究[J].電氣應用,2013,32(23):78-82.

[15] 中國國家標準化管理委員會.GB/T 19939—2005光伏系統并網技術要求[S].北京:中國標準出版社,2005.

[16] IEEE std929—2000,IEEE Recommended Practice for Utility Interface of Photovoltaic(PV) Systems[S].Institute of Electronics Engineers Inc,NewYork,USA,2000.

此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
亚洲你懂的在线视频| 欧美精品久久天天躁| 亚洲激情影院| 性一交一乱一区二区洋洋av| 一区二区三区三区在线| 亚洲春色另类小说| 伊人激情综合| 红杏aⅴ成人免费视频| 国内揄拍国内精品久久| 国产欧美一区二区三区在线老狼 | 亚洲人成在线免费观看| 亚洲高清视频的网址| 亚洲国产精品电影在线观看| 亚洲电影免费观看高清| 久久精品av麻豆的观看方式| 欧美伊人久久| 亚洲国产天堂久久综合网| 亚洲国产精品一区二区久 | 久久在线视频| 老鸭窝亚洲一区二区三区| 欧美 日韩 国产 一区| 欧美二区在线播放| 欧美欧美天天天天操| 欧美日韩一区成人| 国产精品免费电影| 国产一区二区av| 红桃视频国产精品| 91久久线看在观草草青青| 99视频一区| 亚洲欧美日韩另类精品一区二区三区 | 亚洲全部视频| 亚洲视频你懂的| 午夜精品久久久久久久99樱桃| 欧美一区二区三区免费观看| 亚洲国产高清在线观看视频| 99pao成人国产永久免费视频| 中文有码久久| 久久av一区| 欧美暴力喷水在线| 欧美性片在线观看| 国产亚洲一区在线| 亚洲国产小视频| 中文欧美在线视频| 久久国产综合精品| 99av国产精品欲麻豆| 午夜性色一区二区三区免费视频| 久久精品免费| 欧美精品久久久久久久免费观看| 国产精品裸体一区二区三区| 国产综合久久久久久| 亚洲精品九九| 欧美亚洲综合在线| 一片黄亚洲嫩模| 久久精品电影| 欧美女同视频| 国产一在线精品一区在线观看| 91久久综合亚洲鲁鲁五月天| 亚洲一区二区三区777| 亚洲电影中文字幕| 亚洲午夜精品一区二区| 久久久999成人| 欧美视频二区36p| 精品51国产黑色丝袜高跟鞋| 在线一区二区日韩| 亚洲人成人77777线观看| 香蕉久久国产| 欧美激情精品久久久久久| 国产日韩欧美综合精品| 亚洲看片一区| 久久大综合网| 亚洲欧美日韩另类| 欧美大片91| 国产亚洲精品激情久久| 日韩视频免费观看| 亚洲国产日本| 久久国产视频网| 欧美日韩精品中文字幕| 在线播放不卡| 新狼窝色av性久久久久久| 一区二区三区欧美成人| 欧美成人69| 国产一区视频在线观看免费| 一区二区三区日韩| 亚洲人被黑人高潮完整版| 久久精品人人| 国产精品午夜在线| 一本一本a久久| 亚洲欧洲在线免费| 久久男人av资源网站| 国产精品亚洲一区| 国产精品99久久久久久久vr| aaa亚洲精品一二三区| 国产精品区一区二区三区| 国产一区二区福利| 亚洲制服少妇| 亚洲一区999| 欧美黄在线观看| 尤物yw午夜国产精品视频| 性久久久久久久久| 欧美亚洲免费电影| 国产精品爱久久久久久久| 欧美日韩精品系列| 亚洲高清久久久| 亚洲动漫精品| 久久久视频精品| 国产欧美亚洲视频| 在线一区二区日韩| 亚洲无玛一区| 欧美日韩亚洲国产精品| 日韩一级在线观看| 一本色道久久综合亚洲精品不| 麻豆91精品| 激情成人中文字幕| 欧美自拍偷拍午夜视频| 欧美亚洲日本一区| 国产麻豆一精品一av一免费| 亚洲一区免费网站| 亚洲在线中文字幕| 国产精品户外野外| 亚洲性人人天天夜夜摸| 亚洲一区日韩| 国产精品毛片在线看| 亚洲影院免费| 欧美在线观看视频在线| 国产一区二区剧情av在线| 久久成人免费网| 免费视频一区| 亚洲国产精品成人精品| 亚洲精品一级| 欧美另类99xxxxx| 日韩视频在线免费观看| 亚洲自拍偷拍色片视频| 国产精品久久久久久久久免费樱桃 | 国产精品亚洲综合一区在线观看| 亚洲一区在线直播| 久久精品国产综合精品| 红桃视频国产一区| 亚洲精品美女91| 欧美日韩国产精品一区二区亚洲| 亚洲免费观看高清完整版在线观看| 亚洲一区制服诱惑| 国产亚洲人成网站在线观看| 久久av红桃一区二区小说| 女女同性精品视频| 99国产精品久久久久久久| 欧美一二三视频| 欧美午夜精品久久久久久人妖| 中文高清一区| 欧美专区亚洲专区| 在线播放不卡| 一级日韩一区在线观看| 国产精品萝li| 久久精品国产成人| 一区二区三区产品免费精品久久75 | 亚洲国产美国国产综合一区二区 | 欧美极品aⅴ影院| 一本色道久久88精品综合| 午夜激情综合网| 国产一区二区三区av电影| 最新精品在线| 欧美日韩在线三区| 午夜精品一区二区三区在线播放| 久久综合给合| 日韩亚洲国产精品| 久久精品夜夜夜夜久久| 亚洲日韩欧美视频| 欧美一区二区三区四区高清| 在线观看欧美视频| 亚洲一区激情| 一区在线免费观看| 亚洲香蕉网站| 尤物在线观看一区| 亚洲免费影院| 亚洲第一视频| 性色av一区二区三区在线观看| 黄色欧美日韩| 亚洲欧美日韩久久精品| 亚洲福利国产精品| 午夜性色一区二区三区免费视频 | 日韩视频中午一区| 国产亚洲精品v| 亚洲图色在线| 在线观看av不卡| 欧美一级欧美一级在线播放| 91久久线看在观草草青青| 久久成人一区| 一本久久综合亚洲鲁鲁| 久久裸体视频| 亚洲深夜av| 欧美精品在线一区二区| 欧美亚洲尤物久久| 国产精品国产三级国产普通话99| 欧美日韩一区二区高清| 99精品国产一区二区青青牛奶| 欧美日韩一区二区在线| 亚洲激情视频网站| 国产视频一区欧美| 亚洲性感激情| 91久久久国产精品| 久久久久99精品国产片|