《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 電路補償基于測壓元件平衡的系統偏置
電路補償基于測壓元件平衡的系統偏置
摘要: 設計電阻橋式傳感器與5V單電源供電的ADC接口是一個新的挑戰。有些應用需要輸出電壓在0V到滿量程電壓之間以高精度波動。用大多數單電源儀表放大器,當輸出信號接近0V,接近單電源最低輸出擺幅限制時,會出現問題。一個好的單電源儀表放大器可在接近于單電源地的范圍內擺動, 即使有真正的軌對軌輸出,也不能達到地。
Abstract:
Key words :

  雙DAC保存系統偏置電壓,在電源校準程序中決定了該電壓。

  設計電阻橋式傳感器與5V單電源供電的ADC接口是一個新的挑戰。有些應用需要輸出電壓在0V到滿量程電壓(如4.096V)之間以高精度波動。用大多數單電源儀表放大器,當輸出信號接近0V,接近單電源最低輸出擺幅限制時,會出現問題。一個好的單電源儀表放大器可在接近于單電源地的范圍內擺動, 即使有真正的軌對軌輸出,也不能達到地。

  在這個應用中,傳感器是一個精密的測壓元件,其額定負載5kg,即約11磅。在鋁盤上測重大約150g的物體,即大約5盎司。由于鋁盤自重,即使沒有任何物體稱重,儀表放大器的輸出信號也不能低到0V。現在,問題是如何補償儀表放大器的輸出偏置電壓和鋁盤本身產生的電壓值。

  軟件彌補系統偏置是最簡單的方法。電源啟動期間,鋁盤上沒有稱重物體,系統可以獲取偏移電壓,并將數據記錄在單片機內存中。隨后,當有物體稱重時,從獲得的數據中減去它即可。但是,這種做法不能達到5kg滿量程,僅能達到5-0.15kg或4.85kg。

  本設計方案說明如何利用單片機實現硬件補償。當電源啟動后,運行軟件程序復位系統偏移。解

 

決方案如圖1所示,基于四個來自于Linear公司IC的簡單電路。精密參考電壓源IC1,有高達50mA的最小輸出電流。它提供4.096V輸出電壓驅動測壓元件,并設置12位ADC(IC3)的滿量程范圍。高精確儀表放大器LT1789-1(IC2)的特點是在0到70°C溫度范圍內,最大輸入失調電壓為150 µV,軌對軌輸出電壓相對地110mV范圍內擺動時,最大輸入失調偏置電壓是 0.5µV/°C。通過精密電阻R2(阻值為500Ω)設定增益,當稱重是5kg時,輸出范圍為4.096V,其最大輸入信號是VCC×S=4.096V×2 mV/V=8.192 mV,這里S是該傳感器的靈敏度。

 

  雙通道DAC(IC4)的DAC_A輸出在儀表放大器參考引腳處,提供200mV的參考電壓,避免放大器本身近地飽和,但傳輸特性不是線性關系。放大器最壞情況下輸出偏移是:VREF+VPAN±VOFFSET=200 mV+125 mV±500×150 µV=325 mV±75 mV="250" mV/400 mV,這里VPAN=125 mV,是鋁盤自重產生的電壓值。

<a class=電路補償基于測壓元件平衡的系統偏置圖示" border="0" height="220" hspace="0" src="http://files.chinaaet.com/images/20100811/a778bc16-8f86-4100-b136-bf7f7f43fbc8.jpg" vspace="0" width="500" />

  因此系統輸出偏移是250到400mV。電源啟動,微控制器運行程序設置DAC_A輸出為200mV,同時,增加雙通道DAC(IC4)的DAC_B輸出直到等于ADC(IC3)管腳2的系統偏置,轉換結果就是000h。這一結果是可能的,因為IC4包含兩個12位2.5V滿量程電壓的DAC,最低有效位(LSB)等于0.61mV,小于IC3為1mV的分辨率。這個數字相當于該天平的分辨率:5000g/4096=1.22g。當最大負載5kg時,儀表放大器的最大輸出電壓是4.096V+VOUT_TOTAL_OFFSET_INA=4.346V/4.496V,低于4.62V高飽和溫度的最壞情況。

  IC3有一個單極差分輸入,所以可以從+IN輸入電壓中減去一個恒定電壓值等于IC4的DAC_B提供的系統偏置。在第一個半時鐘周期內,ADC采樣和保持正向輸入電壓。這階段結束后,或在獲取時間內,輸入電容切換到負輸入并開始轉換。在IC3輸入處的RC輸入濾波器的時間常數為0.5µs,允許在正負輸入電壓利用最高為200kHz時鐘頻率在轉換時間的第一時鐘周期內達到12位精度。如果想增加時間常數,必須降低時鐘頻率。

  此外,DAC和ADC有三線串行接口,可方便地將數據傳輸到最高采樣率為12.5kS/s的普通微控制器。當ADC處于沒有轉換的時候,它會自動把功率降至1nA的電源電流,而且如果單片機通過其引腳3來關閉IC1,電路限制電源電流在最壞情況下僅為1mA,因為所有的IC集成電路都是微功耗的。

  英文原文:

  Circuit compensates system offset of a load-cell-based balance

  A dual DAC stores the system-offset voltage, which gets determined during a power-on calibration sequence.

  Luca Bruno, ITIS Hensemberger, Monza, Italy; Edited by Charles H Small and Fran Granville -- EDN, 8/16/2007

  It’s a challenge to interface a resistive bridge sensor with an ADC receiving its power from a 5V single-supply power source. Some applications require output-voltage swings from 0V to a full-scale voltage, such as 4.096V, with excellent accuracy. With most single-supply instrumentation amplifiers, problems arise when the output signal approaches 0V, near the lower output-swing limit of a single-supply instrumentation amp. A good single-supply instrumentation amp may swing close to single-supply ground but does not reach ground even if it has a true rail-to-rail output.

 

  In this application, the sensor is a precision load cell with a nominal load of 5 kg, or about 11 lbs, to weigh objects on an aluminum pan weighing approximately 150g, or approximately 5 oz. Because of the pan’s weight, the instrumentation amplifier’s output signal can never go down to 0V, even if there are no objects to weigh. Now, the problem arises of how to compensate the instrumentation amp’s output-offset voltage and the voltage that the pan itself produces.

  A software approach is the simplest way to compensate the system offset. During power-up, there are no objects to weigh on the pan, and the system can thus acquire the offset voltage and hold the data in the microcontroller’s memory, subsequently subtracting it from the data it acquired when there was an object to weigh. This approach, however, does not reach the 5-kg full-scale of the balance, reaching only 5–0.15 kg, or 4.85 kg.

  This Design Idea shows how to achieve hardware compensation using a microcontroller that, on power-up, starts a software routine to reset the system offset. The solution is a simple circuit based on four ICs from Linear Technology in Figure 1. A precision voltage reference, IC1, has a high minimum output current of 50 mA. It provides an output voltage of 4.096V to power the load cell and to set the full-scale of the 12-bit ADC, IC3. The highly accurate LT1789-1 instrumentation amplifier, IC2, features maximum input-offset voltage of 150 µV over the temperature range of 0 to 70°C and maximum input-drift-offset voltage of 0.5 µV/°C over the temperature range of 0 to 70°C with rail-to-rail output that swings within 110 mV of ground. You set the gain through precision resistor R2 to a nominal value of 500Ω to give an output span of 4.096V when the load is 5 kg and its maximum input signal is VCC×S=4.096V×2 mV/V=8.192 mV, where S is the sensor’s sensitivity.

 

  The output of DAC_A of dual-DAC IC4 provides a reference voltage of 200 mV at the refer

 

ence pin of the instrumentation amp to avoid saturation near ground of the amplifier itself, where its transfer characteristic is not quite linear. The amplifier’s total worst-case output offset is: VREF+VPAN±VOFFSET=200 mV+125 mV±500×150 µV=325 mV±75 mV="250" mV/400 mV, where VPAN="125" mV and is the voltage that the pan’s weight produces.

 

  The system-output offset is thus 250 to 400 mV. On power-up, the microcontroller starts a routine that sets the output of the DAC_A equal to 200 mV, while it increases the output of the DAC_B of dual-DAC IC4 until it is equal to the system offset on Pin 2 of ADC IC3, and the result of the conversion is 000h. This result is possible because IC4 contains two 12-bit DACs with the same full-scale voltage of 2.5V, making 1 LSB equal to 0.61 mV, which is smaller than IC3’s resolution of 1 mV. This figure corresponds to the resolution of the balance: 5000g/4096=1.22g. The maximum output voltage of the instrumentation amp with a maximum load of 5 kg is 4.096V+VOUT_TOTAL_OFFSET_INA=4.346V/4.496V, which is less than the minimum worst case over temperature of 4.62V high saturation.

  IC3 has a single unipolar differential input, so you can subtract from the +IN input voltage a constant voltage of value equal to the system offset that that DAC_B of IC4 provides. During the first one and a half clock cycles, the ADC samples and holds the positive input. At the end of this phase, or acquisition time, the input capacitor switches to the negative input, and the conversion starts. The RC-input filters on the inputs of IC3 have a time constant of 0.5 µsec to permit the negative and positive input voltages to settle to a 12-bit accuracy during the first clock cycle of the conversion time, using the maximum clock frequency, which is 200 kHz. If you want to increase the time constant, then you must use a lower clock frequency.

 

  Furthermore, the DAC and ADC have a three-wire serial interface that easily permits transferring data to a wide range of microcontrollers with a maximum sampling rate of 12.5k samples/sec. When the ADC performs no conversions, it automatically powers down to 1 nA of supply current, and, if the microcontroller shuts down IC1 through its Pin 3, the circuit draws a worst-case supply current of just 1 mA, because all the ICs are micropower.

此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
亚洲第一精品久久忘忧草社区| 欧美日韩中文在线观看| 亚洲国产精品第一区二区三区| 亚洲第一精品夜夜躁人人爽| 国产视频一区欧美| 国产欧美一级| 欧美成人精品1314www| 亚洲图片欧洲图片av| 亚洲精品一区二区三区四区高清| 亚洲无线一线二线三线区别av| 国产欧美亚洲日本| 国产精品揄拍500视频| 国产免费成人在线视频| 国产精品日韩高清| 国产精品久久久久免费a∨大胸| 麻豆成人在线| 蜜臀久久99精品久久久久久9| 亚洲免费视频中文字幕| 日韩一区二区电影网| 一本色道久久88综合亚洲精品ⅰ | 欧美在线观看视频一区二区| 亚洲一区二区免费看| 亚洲婷婷在线| 性做久久久久久久免费看| 亚洲黄色有码视频| 欧美午夜一区二区福利视频| 日韩视频在线观看国产| 亚洲激情小视频| 亚洲精品中文字幕在线| 一区二区三区久久| 亚洲自拍偷拍一区| 欧美在线网址| 91久久黄色| 一区二区高清| 91久久久久久久久久久久久| 亚洲激情女人| 日韩视频在线一区二区| 亚洲视频免费| 欧美影院视频| 欧美 亚欧 日韩视频在线| 欧美精品一区二区蜜臀亚洲 | 麻豆成人在线播放| 欧美激情91| 欧美午夜无遮挡| 国产三级欧美三级| 亚洲第一视频| 一区二区免费在线视频| 亚洲欧美在线一区| 亚洲尤物视频网| 久久国产欧美日韩精品| 一区二区三区国产盗摄| 欧美亚洲一区二区在线观看| 久久性色av| 欧美日韩国产成人| 国产精品爽黄69| 亚洲国产精品va在看黑人| 黄色精品网站| 亚洲精品专区| 欧美在线视频a| 日韩亚洲精品在线| 日韩午夜在线播放| 午夜精品国产精品大乳美女| 另类酷文…触手系列精品集v1小说| 久久精品视频在线看| 欧美成人久久| 国产精品揄拍一区二区| 亚洲区一区二| 欧美一区二区视频网站| 一区二区黄色| 美女成人午夜| 国产精品视频一二三| 亚洲观看高清完整版在线观看| 亚洲丰满在线| 亚洲综合色网站| 一本久久知道综合久久| 浪潮色综合久久天堂| 国产精品男女猛烈高潮激情| 亚洲国产精品成人精品| 亚洲精品一品区二品区三品区| 亚洲精品综合久久中文字幕| 日韩一二在线观看| 亚洲第一精品福利| 欧美一级专区免费大片| 欧美日韩大片一区二区三区| 国产永久精品大片wwwapp| 一区二区三区免费观看| 亚洲精品亚洲人成人网| 久久网站热最新地址| 国产精品日韩久久久久| 亚洲欧洲日产国码二区| 欧美中文字幕精品| 亚洲精品国产精品国自产观看浪潮 | 欧美在线不卡视频| 欧美日韩久久| 亚洲国产一区二区三区高清 | 久久成人综合视频| 亚洲香蕉网站| 欧美激情在线有限公司| 影音先锋在线一区| 欧美一区二区视频网站| 欧美一区1区三区3区公司| 欧美图区在线视频| 亚洲伦理久久| 日韩亚洲欧美一区二区三区| 老司机精品导航| 好看的亚洲午夜视频在线| 午夜精品久久久久久99热软件| 久久激情视频免费观看| 亚洲欧美文学| 国产精品久久久久久久电影| 国内精品99| 小黄鸭视频精品导航| 性做久久久久久免费观看欧美| 麻豆久久精品| 国产一区三区三区| 欧美一级视频| 一区二区三区av| 欧美精品在线免费| 亚洲欧洲日本专区| 欧美中文字幕视频| 亚洲性视频网址| 欧美日韩一区二区在线观看| 狠狠v欧美v日韩v亚洲ⅴ| 午夜国产精品影院在线观看| 欧美一区免费视频| 国产亚洲午夜高清国产拍精品| 亚洲精品乱码久久久久久按摩观| 午夜精品福利在线观看| 午夜精品久久久久久久久久久久久| 你懂的国产精品永久在线| 亚洲国产91| 久久精品一区二区三区四区| 久久精品视频导航| 一区免费视频| 日韩一级黄色av| 国产精品v欧美精品v日本精品动漫| 永久555www成人免费| 亚洲女优在线| 欧美专区日韩视频| 国内精品福利| 亚洲精品偷拍| 六月天综合网| 亚洲精品1234| 亚洲欧美国产高清| 欧美色综合天天久久综合精品| 亚洲电影免费观看高清完整版在线观看| 亚洲一区亚洲二区| 欧美一区二区三区免费观看视频| 欧美日韩日本视频| 亚洲小视频在线观看| 久久精品一本| 亚洲激情欧美| 亚洲欧美日韩天堂一区二区| 国产三区二区一区久久| 亚洲娇小video精品| 欧美日韩亚洲精品内裤| 午夜精品婷婷| 欧美大片va欧美在线播放| 99精品国产一区二区青青牛奶| 日韩一级视频免费观看在线| 国产精品v一区二区三区| 欧美一区二区三区四区高清| 免费欧美在线视频| 一个色综合导航| 久久久久一区| 99re6这里只有精品| 99视频+国产日韩欧美| 国产精品久久久久aaaa| 久久精品亚洲精品国产欧美kt∨| 久久人人爽人人爽| 亚洲片在线观看| 欧美一区激情| 亚洲日本aⅴ片在线观看香蕉| 日韩一区二区精品| 国产精品三级视频| 亚洲人体影院| 国产精品丝袜白浆摸在线| 91久久视频| 国产精品试看| 日韩视频免费观看| 国产视频一区在线| 欧美在线电影| 欧美午夜精品久久久久久人妖 | 欧美日韩精品免费观看| 午夜久久久久久久久久一区二区| 欧美一区二区三区久久精品茉莉花| 国产精品一区二区a| 亚洲人成网站777色婷婷| 欧美大片一区| 午夜精品久久久久久久久| 欧美久久久久中文字幕| 欧美在线综合| 国产精品色一区二区三区| 一本久道久久综合中文字幕| 国内久久精品视频| 亚洲欧美一区二区激情| 最新成人av网站| 久久综合狠狠综合久久综合88| 亚洲国产欧美一区| 欧美在线三级|