《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 基于灰度共生矩陣和多尺度MRF的紋理圖像分割
基于灰度共生矩陣和多尺度MRF的紋理圖像分割
來源:微型機(jī)與應(yīng)用2013年第13期
劉小丹,李陸陸
(遼寧師范大學(xué) 計算機(jī)與信息技術(shù)學(xué)院,遼寧 大連116081)
摘要: 針對紋理圖像分割問題的研究,經(jīng)典的多尺度MRF方法是對不同尺度的紋理特征僅通過多尺度序列下的MRF鄰域系統(tǒng)進(jìn)行描述。為了更加準(zhǔn)確地描述紋理特征,將從空間分布特性與MRF鄰域系統(tǒng)兩個方面綜合考慮,提出一種帶有聯(lián)合灰度信息的灰度共生矩陣與多尺度MRF相結(jié)合的方法。實驗結(jié)果表明,該方法能夠有效地提高分割準(zhǔn)確度。
Abstract:
Key words :

摘  要: 針對紋理圖像分割問題的研究,經(jīng)典的多尺度MRF方法是對不同尺度的紋理特征僅通過多尺度序列下的MRF鄰域系統(tǒng)進(jìn)行描述。為了更加準(zhǔn)確地描述紋理特征,將從空間分布特性與MRF鄰域系統(tǒng)兩個方面綜合考慮,提出一種帶有聯(lián)合灰度信息的灰度共生矩陣與多尺度MRF相結(jié)合的方法。實驗結(jié)果表明,該方法能夠有效地提高分割準(zhǔn)確度。
關(guān)鍵詞: 紋理圖像分割;灰度共生矩陣;多尺度;MRF

 紋理作為一種自然屬性,在一定程度上反映了物體的特征,并且紋理具有抗遮擋能力強(qiáng)、受環(huán)境影響小等特點,因此常被用于區(qū)分背景與其他物體。通常情況下,紋理可以采用基于模型的MRF(Markov Random Field)方法進(jìn)行描述。單尺度MRF模型是空域模型,常采用貝葉斯法進(jìn)行圖像分割。多尺度MRF模型是在不同分辨率的圖像上進(jìn)行分析,它能捕捉到不同分辨率圖像的結(jié)構(gòu)信息以及具備更強(qiáng)的空間描述能力,并且還具有計算復(fù)雜度低、收斂速度快、減少過分割現(xiàn)象和較強(qiáng)的抗噪性能等特點[1],因此多尺度MRF圖像分割受到廣泛關(guān)注。近幾年研究中,陳曉惠等人[2]將形態(tài)小波域多尺度馬爾可夫模型應(yīng)用于紋理圖像分割中,該模型結(jié)合了形態(tài)小波和MRF各自的優(yōu)勢,能夠?qū)D像進(jìn)行非線性多尺度分解,因此提高了對紋理特征的描述。對于多尺度MRF分割方法,不同尺度的紋理特征僅通過多尺度序列下的MRF鄰域系統(tǒng)進(jìn)行描述,并且在起始分割中僅考慮了灰度特征而忽略了鄰域系統(tǒng)特性和像素在空間中的排列信息。在統(tǒng)計方法中,灰度共生矩陣能夠有效地從空間中提取紋理特征[3],并且灰度共生矩陣與MRF之間存在關(guān)聯(lián)性,其中3個不相關(guān)的二次統(tǒng)計量就可作為紋理特征描述。僅用灰度信息、距離判定、無鄰域系統(tǒng)相關(guān)性或空間相關(guān)性描述紋理特征,具有一定的局限性。為了解決該問題,本文提出將帶有灰度信息的灰度共生矩陣與多尺度MRF相結(jié)合的方法進(jìn)行紋理圖像分割。
1 多尺度MRF與灰度共生矩陣下的紋理結(jié)構(gòu)
1.1 多尺度MRF

 原始圖像經(jīng)過小波分解后可得到具有不同尺度的圖像數(shù)據(jù),并依據(jù)尺度大小關(guān)系組成金字塔結(jié)構(gòu)。然后,在最大尺度圖像上利用低頻信號建立最大尺度下的MRF,再依次以上層分割結(jié)果作為下層分割的基礎(chǔ)[4]。
 圖像的多尺度MRF模型是通過建立特征場與標(biāo)號場來描述數(shù)據(jù)信息的。多分辨率特征場的多尺度序列表示為Y={Y0,Y1,…,YJ-1},標(biāo)號場表示為X={X0,X1,…,XJ-1},其中特征場描述數(shù)據(jù)的特征,標(biāo)號場描述分割結(jié)果的類別[2]。通常采用MRF二階鄰域系統(tǒng)(即某一像素與其鄰近像素的關(guān)系)的形式來表示紋理特征,如圖1所示。由于二階鄰域系統(tǒng)未能詳細(xì)地描述出像素的空間排列信息,因此在分割過程中可能會漏掉某些特征信息。

 與MRF不同,二次統(tǒng)計量是在空間分布上對紋理信息進(jìn)行描述[5]。灰度共生矩陣在描述紋理時缺少了局部細(xì)節(jié)信息,可以通過MRF的鄰域系統(tǒng)來彌補(bǔ)。反之,MRF空間信息的缺失也可以通過灰度共生矩陣得到補(bǔ)充。
2 基于灰度共生矩陣和多尺度MRF的紋理圖像分割
 以灰度共生矩陣為基礎(chǔ)提取的3個互不相關(guān)的二次統(tǒng)計量熵、對比度與相關(guān)性,可以很好地從空間分布方面來描述圖像的紋理[6]。為了更加準(zhǔn)確地描述紋理特征,可將3個互不相關(guān)的統(tǒng)計量與灰度信息共同用于描述最大尺度下的紋理信息,形成特征矩陣C=[f1 f2 f3 f4],然后進(jìn)行FCM聚類。

 基于灰度共生矩陣和多尺度MRF圖像分割方法流程如圖3所示,具體步驟如下:
 (1)設(shè)定圖像的分類數(shù)K、勢團(tuán)參數(shù)β以及算法迭代次數(shù)。
 (2)對圖像作n=J-1層小波分解,利用灰度共生矩陣提取特征,并與灰度信息共同獲得特征矩陣,利用FCM獲得起始分割結(jié)果。
 (3)由聚類算法的標(biāo)號計算出尺度J上的標(biāo)號場能量,進(jìn)行參數(shù)估計,計算特征場能量,利用能量最小原則,得出該尺度分割結(jié)果。
 (4)將該尺度的計算結(jié)果直接映射到最鄰近的高分辨率圖像上作為初始分割。
 (5)進(jìn)行參數(shù)估計,計算標(biāo)號場能量,計算特征場能量,更新迭代條件當(dāng)能量最小時計算停止。

 

 

3 實驗結(jié)果與分析
 選取256×256的合成紋理圖像、256×256的遙感圖像和來自Berkeley圖像庫編號為86016的481×321自然景物紋理圖像。實驗選取灰度共生矩陣步長為1,方向選取0°、45°、90°、135°。紋理合成圖像灰度共生矩陣選取7×7的滑動窗口,勢團(tuán)參數(shù)=5.5,迭代100次;遙感圖像選取5×5的滑動窗口,勢團(tuán)參數(shù)β=0.9,迭代50次;自然景物圖像選擇33窗口,勢團(tuán)參數(shù)β=0.9,迭代50次。實驗平臺為Matlab 7.8.0,圖4為分割效果圖,其中,第1列至第5列分別為:實驗原圖、手工標(biāo)注圖、灰度共生矩陣分割結(jié)果、多尺度MRF分割結(jié)果、本文方法分割結(jié)果。為了能夠定量分析分割結(jié)果,本文將采用整體分類精度和Kappa系數(shù)作為評價指標(biāo),結(jié)果如表1所示。

 從表1可以看出,針對3種類型紋理圖像,本文方法獲得的分割結(jié)果要明顯優(yōu)于灰度共生矩陣法與多尺度MRF法。其中,對于合成紋理圖像,本文方法的整體分類精度為99.03%,Kappa系數(shù)為97.95%,均高于灰度共生矩陣法與多尺度MRF法;對于遙感圖像,本文方法的整體分類精度為96.66%,Kappa系數(shù)為90.12%,均高于灰度共生矩陣法與多尺度MRF法;對于自然景物圖像,本文方法的整體分類精度為98.34%,Kappa系數(shù)為96.13%,也均高于灰度共生矩陣法與多尺度MRF法。綜合考慮,在平均整體分類精度方面,本文方法比多尺度MRF法高出2.96%,比灰度共生矩陣法高出5.94%;在平均Kappa系數(shù)方面,本文方法比多尺度MRF法高出1.72%,比灰度共生矩陣法高出12.12%。實驗表明,本文提出的紋理圖像分割方法不僅提高了分割準(zhǔn)確度,還提高了分割的一致性。
 本文提出了一種基于灰度共生矩陣和多尺度MRF紋理圖像的分割方法。首先,采用小波分解獲得圖像各個尺度的數(shù)據(jù)信息,之后在最大尺度上結(jié)合灰度信息以及由灰度共生矩陣獲得的二次統(tǒng)計量進(jìn)行FCM聚類,作為最大尺度上MRF的起始分割;其次,依照起始分割的標(biāo)號再進(jìn)行當(dāng)前尺度MRF的分割,建立特征場與標(biāo)號場,獲得當(dāng)前尺度最終的分割結(jié)果;最后,當(dāng)前分割結(jié)果作為鄰近高分辨率圖像的起始分割再進(jìn)行優(yōu)化。實驗表明,本文方法分割紋理圖像的準(zhǔn)確度與Kappa系數(shù)高于多尺度MRF方法和灰度共生矩陣的方法。在后續(xù)的研究中,將探討如何提高算法的運(yùn)算速度。
參考文獻(xiàn)
[1] 劉國英,馬國銳,王雷光,等.基于Markov隨機(jī)場的小波域圖像建模及分割[M].北京:科學(xué)出版社,2010.
[2] 陳曉惠,鄭晨,段汕,等.形態(tài)小波域多尺度馬爾可夫模型在紋理圖像分割中的應(yīng)用[J].中國圖象圖形學(xué)報,2011,16(5):761-766.
[3] 韋玉春,湯國安,楊昕,等.遙感數(shù)字處理教程[M].北京:科學(xué)出版社,2009.
[4] Zheng C, Liu G, Hu Y, et al. Image segmentation based on multiresolution Markov random field with fuzzy constraintin wavelet domain[J]. IET Image Process,2012,6(3):213-221.
[5] MRIDULA J, KUNDAN C, DIPTI P. Combining GLCM features and Markov random field model for colour textured image segmentation[C]. IEEE Conference on Devices and Communications(ICDeCom2011),2011:1-5.

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
一本色道久久综合亚洲精品高清| 欧美一区二区三区在线| 国产婷婷色一区二区三区| 欧美日韩精品在线观看| 免费久久久一本精品久久区| 久久久国际精品| 性色av一区二区三区| 亚洲女同性videos| 亚洲视频一区二区免费在线观看| 亚洲乱码日产精品bd| 亚洲精品美女在线| 亚洲免费观看在线观看| 亚洲精品综合在线| 日韩视频在线观看国产| 亚洲免费观看| 在线视频日本亚洲性| 一区二区精品国产| 中文av一区二区| 亚洲视频一区在线| 亚洲欧美日韩电影| 午夜亚洲性色视频| 久久精品国产精品亚洲精品| 久久精品国产久精国产思思| 久久久久久久久久久久久9999| 久久久久久91香蕉国产| 久久米奇亚洲| 久久av资源网站| 久久综合亚洲社区| 欧美激情a∨在线视频播放| 欧美极品一区二区三区| 欧美日韩在线不卡| 国产精品资源在线观看| 国产一区二三区| 在线观看欧美一区| 亚洲美女视频在线观看| 亚洲一区二区在线观看视频| 午夜视频一区| 亚洲高清久久久| 日韩视频在线你懂得| 亚洲在线一区二区| 欧美专区18| 欧美成人嫩草网站| 国产精品xxxxx| 国产一区二区精品在线观看| 在线观看91久久久久久| 亚洲精品视频一区二区三区| 亚洲一区二区日本| 久久精品系列| 一区二区欧美日韩视频| 欧美一区永久视频免费观看| 久久综合免费视频影院| 欧美日韩免费精品| 国产日韩欧美在线| 亚洲啪啪91| 亚洲一区二区三区四区五区午夜 | 国产精品女主播一区二区三区| 国产日韩欧美成人| 亚洲品质自拍| 亚洲欧美日韩另类| 亚洲免费激情| 久久精品国产99国产精品澳门| 欧美国产日韩一区二区在线观看 | 99热在这里有精品免费| 欧美在线观看视频在线| 欧美高清不卡在线| 国产免费一区二区三区香蕉精| 亚洲国产一区二区三区a毛片| 亚洲天堂av图片| 亚洲日本欧美| 欧美在线关看| 欧美日韩黄色大片| 激情一区二区| 亚洲图片欧洲图片av| 亚洲日本aⅴ片在线观看香蕉| 欧美一级在线亚洲天堂| 欧美极品在线观看| 激情国产一区| 亚洲天堂av在线免费观看| 亚洲欧洲一区二区三区久久| 亚洲欧美中文字幕| 欧美日本不卡视频| 精久久久久久久久久久| 亚洲欧美制服中文字幕| 亚洲午夜未删减在线观看| 欧美freesex8一10精品| 国产亚洲欧美一区二区| 亚洲深爱激情| 99精品视频一区| 免费在线观看成人av| 国产欧美日韩精品a在线观看| 亚洲美女黄网| 亚洲精品视频在线观看免费| 久久精品夜夜夜夜久久| 国产精品久久二区二区| 亚洲精品欧美| 亚洲人体大胆视频| 狼人天天伊人久久| 国产亚洲欧洲997久久综合| 亚洲视频一区| 中文成人激情娱乐网| 欧美精品国产精品| 亚洲高清不卡av| 亚洲激情六月丁香| 久久精品成人一区二区三区蜜臀| 国产精品成人久久久久| 日韩视频免费| 99爱精品视频| 欧美日本亚洲视频| 亚洲日本免费| 一本久道久久久| 欧美日韩高清免费| 日韩午夜一区| 在线视频亚洲| 欧美涩涩网站| 宅男在线国产精品| 亚洲综合好骚| 国产精品美女诱惑| 亚洲影院污污.| 欧美在线一二三区| 国产午夜久久久久| 午夜日韩视频| 久久久精品国产免费观看同学| 国产色婷婷国产综合在线理论片a| 亚洲一区免费在线观看| 午夜视频一区二区| 国产日韩欧美在线视频观看| 欧美在线啊v一区| 久久综合狠狠综合久久综青草| 韩国三级电影久久久久久| 欧美在线播放视频| 美女91精品| 91久久夜色精品国产九色| 一区二区日本视频| 国产精品多人| 香蕉尹人综合在线观看| 久久久久国产精品www| 精品福利免费观看| 亚洲精品午夜| 欧美视频日韩视频| 亚洲曰本av电影| 久久精品二区三区| 在线日韩欧美| 日韩小视频在线观看| 国产精品电影观看| 欧美在线播放一区| 欧美黄色一区| 亚洲一区二区在线| 久久天堂成人| 亚洲欧洲三级| 亚洲女人天堂av| 国内外成人免费视频| 亚洲精品一区在线| 欧美吻胸吃奶大尺度电影| 午夜精品一区二区三区电影天堂 | 亚洲黄色一区| 亚洲免费视频网站| 国产亚洲成人一区| 亚洲精品黄网在线观看| 欧美日韩国产在线观看| 亚洲欧美大片| 欧美成人免费va影院高清| 在线视频精品一| 久久久精彩视频| 亚洲精品一区二区三区四区高清| 亚洲欧美一区二区三区在线| 黄色一区二区在线观看| 一区二区三区四区国产| 国产日韩精品一区二区浪潮av| 亚洲精华国产欧美| 国产精品久久久久国产a级| 亚洲第一页自拍| 国产精品r级在线| 亚洲国产精品一区二区第四页av | 久久狠狠久久综合桃花| 欧美日韩国产高清视频| 欧美一区三区三区高中清蜜桃 | 久久国产欧美| 欧美深夜影院| 亚洲大胆视频| 国产精品成人在线观看| 久久精品国产亚洲a| 欧美亚州在线观看| 最新亚洲一区| 国产精品人人做人人爽| 亚洲精美视频| 国产手机视频一区二区| 一二三区精品福利视频| 国内精品免费午夜毛片| 亚洲一区亚洲二区| 亚洲国产欧美日韩精品| 久久久av毛片精品| 一区二区三区四区五区精品视频 | 欧美日韩成人综合在线一区二区| 欧美一区二区三区四区在线观看| 欧美日韩国产免费| 亚洲国产成人在线播放| 国产精品亚洲片夜色在线| 亚洲美女av在线播放| 极品av少妇一区二区| 欧美在线观看视频一区二区|