《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 基于案例推理的認(rèn)知自學(xué)習(xí)引擎
基于案例推理的認(rèn)知自學(xué)習(xí)引擎
來(lái)源:電子技術(shù)應(yīng)用2011年第12期
劉怡靜1,2, 汪李峰2, 魏勝群2
(1. 解放軍理工大學(xué) 通信工程學(xué)院 研究生管理大隊(duì)四隊(duì), 江蘇 南京210007;2. 中國(guó)電子系
摘要: 認(rèn)知無(wú)線電與傳統(tǒng)無(wú)線電的最大區(qū)別在于其能夠感知環(huán)境,主動(dòng)去學(xué)習(xí)、適應(yīng)環(huán)境。近年來(lái),對(duì)于認(rèn)知無(wú)線電的研究主要集中于多目標(biāo)優(yōu)化的配置決策問(wèn)題。但實(shí)際的通信系統(tǒng)可觀測(cè)到的環(huán)境參數(shù)有限,且輸入輸出關(guān)系復(fù)雜,需要認(rèn)知無(wú)線電通過(guò)學(xué)習(xí)來(lái)理解并適應(yīng)環(huán)境。針對(duì)上述問(wèn)題,提出了一種基于案例推理和模擬退火思想的認(rèn)知決策引擎算法。仿真結(jié)果表明,該算法具有增量自學(xué)習(xí)、多目標(biāo)適用性、快速收斂等優(yōu)點(diǎn)。
中圖分類號(hào): TP23
文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào): 0258-7998(2011)12-0076-04
Cell gesture recognition based on inertial sensors
Liu Yu, Yang Ping, Duan Bingtao
School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731,China
Abstract: With gesture input, cell phones can be much more functional, convenience and funny. The core of this input way is recognizing the current gesture quickly and accurately. A method of recognize the gesture based on inertial sensors is tested in this paper, and it is proved useful.
Key words : inertial sensors; human-machine interaction; gesture recognition; fusion algorithm


    基于案例推理CBR(Case-Based Reasoning)借鑒人類處理問(wèn)題的方式,運(yùn)用以前積累的知識(shí)和經(jīng)驗(yàn)直接解決問(wèn)題。由于CBR具備自主學(xué)習(xí)功能,不要求決策主體掌握豐富領(lǐng)域知識(shí)或精確的數(shù)學(xué)模型,僅僅通過(guò)簡(jiǎn)單的案例記憶就能實(shí)現(xiàn)出色的增量學(xué)習(xí)和自我提升,因而引起相關(guān)專家和學(xué)者的關(guān)注,逐漸成為人工智能領(lǐng)域的一個(gè)研究熱點(diǎn)。
 認(rèn)知無(wú)線電技術(shù)作為無(wú)線通信領(lǐng)域與人工智能領(lǐng)域相結(jié)合的產(chǎn)物[1],近年來(lái)受到極大關(guān)注。認(rèn)知決策引擎是認(rèn)知無(wú)線電CR(Cognitive Radio)實(shí)現(xiàn)其智能的核心功能模塊,決策引擎以CR觀察到的外界無(wú)線環(huán)境、CR自身狀態(tài)和用戶需求信息為輸入,對(duì)目標(biāo)和情境進(jìn)行分析,根據(jù)已有知識(shí)進(jìn)行推理、決策,輸出達(dá)到用戶需求的優(yōu)化配置,同時(shí)能夠?qū)W習(xí)不同配置在新環(huán)境下的效用,從而豐富系統(tǒng)知識(shí),以適應(yīng)環(huán)境和需求的變化[2]。
 當(dāng)認(rèn)知無(wú)線電可以通過(guò)觀察獲得需要的所有環(huán)境知識(shí)(表示為c),且用戶需求u與環(huán)境c和配置d之間的定量關(guān)系u=f(c,d)已知時(shí),將認(rèn)知決策的過(guò)程建模為一個(gè)優(yōu)化問(wèn)題[3],即在給定的環(huán)境c下,尋找最優(yōu)配置決策d,使性能u最大(或?qū)ふ夷硞€(gè)配置決策d,使性能u得到滿足)的情況。參考文獻(xiàn)[4]使用遺傳算法對(duì)CR中多目標(biāo)優(yōu)化問(wèn)題進(jìn)行了研究,參考文獻(xiàn)[5]將粒子群優(yōu)化算法應(yīng)用在認(rèn)知引擎的決策問(wèn)題中,參考文獻(xiàn)[6]考慮遺傳算法中參數(shù)敏感度對(duì)不同目標(biāo)的影響,進(jìn)一步提升了優(yōu)化效率。然而,在實(shí)際應(yīng)用中,CR可直接觀測(cè)得到的環(huán)境參數(shù)有限(比如信道統(tǒng)計(jì)特性等無(wú)法直接觀測(cè)得到),且系統(tǒng)可能面臨各種不同的傳播環(huán)境、動(dòng)態(tài)接入不同頻段的信道,輸入c和u與輸出d的關(guān)系很復(fù)雜,函數(shù)f無(wú)法事先確知。此時(shí),認(rèn)知無(wú)線電需要通過(guò)不斷地學(xué)習(xí)來(lái)理解并適應(yīng)環(huán)境。目前,針對(duì)環(huán)境部分可觀測(cè)、精確函數(shù)f未知下的認(rèn)知決策系統(tǒng)研究才剛起步,參考文獻(xiàn)[3]簡(jiǎn)單舉例說(shuō)明了學(xué)習(xí)在解決這類問(wèn)題當(dāng)中的關(guān)鍵作用,但尚未有相關(guān)系統(tǒng)的研究成果出現(xiàn)。
 本文針對(duì)這類問(wèn)題,研究基于案例的推理決策問(wèn)題,提出基于案例庫(kù)的認(rèn)知決策引擎。文中所提決策框架具有自學(xué)習(xí)、多狀態(tài)多目標(biāo)通用性強(qiáng)、快速收斂等特點(diǎn)。
1 CBR簡(jiǎn)介
 基于案例的推理模仿人類的思維方式,直接援引以前積累的經(jīng)驗(yàn)和知識(shí)解決現(xiàn)在的問(wèn)題,同時(shí)將當(dāng)前問(wèn)題及解決結(jié)果補(bǔ)充為新知識(shí),從而實(shí)現(xiàn)自主學(xué)習(xí)和增量學(xué)習(xí)。
 通常,CBR系統(tǒng)的運(yùn)作過(guò)程可以概括為“4Rs”(如圖1所示):

 (1)檢索(Retrieve):分析當(dāng)前面臨的新問(wèn)題,定義新問(wèn)題的特征或?qū)傩裕诎咐龓?kù)中尋找對(duì)解決當(dāng)前問(wèn)題有最大潛在啟發(fā)價(jià)值的舊案例;
 (2)重用(Reuse):以相似案例為基礎(chǔ),通過(guò)自適應(yīng)的調(diào)整,構(gòu)造新問(wèn)題的解決策略;
 (3)修訂(Revise):執(zhí)行并驗(yàn)證當(dāng)前策略;
 (4)存儲(chǔ)(Retain):將有參考價(jià)值的經(jīng)驗(yàn)案例存儲(chǔ)到案例庫(kù)中。
    其中,檢索和重用屬于推理階段,修訂和存儲(chǔ)屬于學(xué)習(xí)階段,學(xué)習(xí)的過(guò)程將以往的決策經(jīng)驗(yàn)以案例的形式進(jìn)行積累,使系統(tǒng)知識(shí)不斷豐富,以提高未來(lái)推理的效能,從而在面對(duì)新問(wèn)題時(shí)能夠做出更好的決策。
2 基于CBR與模擬退火的自學(xué)習(xí)認(rèn)知決策算法
 認(rèn)知引擎的輸入變量包括用戶的目標(biāo)需求、觀測(cè)到的無(wú)線環(huán)境變量以及CR自身狀態(tài),三者共同影響認(rèn)知引擎的配置決策。為了使CR通信案例庫(kù)具有廣泛的可借鑒性,為不同目標(biāo)、不同狀態(tài)的CR決策提供參考,構(gòu)建如表1所示案例庫(kù)。其中條件屬性包括觀測(cè)的無(wú)線環(huán)境特征和自身狀態(tài)(如當(dāng)前信道是否空閑、最大發(fā)射功率、可選的調(diào)制編碼方式等),用于描述問(wèn)題發(fā)生的場(chǎng)景或情境。決策屬性為CR所作的一些反應(yīng),包括信道、發(fā)射功率、調(diào)制方式、編碼方式、數(shù)據(jù)包長(zhǎng)等配置參數(shù)。結(jié)果為在不同條件屬性下,相應(yīng)配置所帶來(lái)的不同目標(biāo)的實(shí)際性能,如誤比特率、吞吐量、頻譜效率、存活時(shí)間等。



 


出,算法具有快速收斂性(決策100次左右,算法已經(jīng)能夠獲取可觀的性能),且退火系數(shù)越小,溫度下降越快,收斂也越快,但過(guò)快收斂的代價(jià)是性能次優(yōu);而反之,過(guò)大的退火系數(shù)能夠帶來(lái)更優(yōu)的吞吐量,然而收斂速度相對(duì)較慢。在接下來(lái)的仿真中,取λ=0.5。
    為驗(yàn)證本算法對(duì)于不同通信目標(biāo)的廣泛通用性,考慮兩種典型通信目標(biāo)。目標(biāo)1:最大化系統(tǒng)吞吐量;目標(biāo)2:在保證系統(tǒng)吞吐量大于4 Mb/s前提下,最大化頻譜能效。仿真結(jié)果如圖3所示。對(duì)于通信目標(biāo)1,隨著案例經(jīng)驗(yàn)的累積,其學(xué)到的知識(shí)也日益豐富,因而系統(tǒng)吞吐量性能越來(lái)越好(如圖3左上所示),但其頻譜效能并未得到提高(圖3左下)。對(duì)于通信目標(biāo)2,在配置決策滿足吞吐量的目標(biāo)要求下(圖3右上),系統(tǒng)的頻譜效能隨著決策的進(jìn)行逐漸提高(圖3右下)。仿真結(jié)果表明本算法可以滿足不同的目標(biāo)需求。

    圖4為功率參數(shù)調(diào)整曲線。如圖,當(dāng)通信目標(biāo)為最大化用戶吞吐量時(shí),盡管系統(tǒng)不知道功率越大則吞吐量越大的這種先驗(yàn)知識(shí),但是通過(guò)不斷學(xué)習(xí),系統(tǒng)不斷調(diào)整其發(fā)射功率,使其逼近于最大發(fā)射功率23 dBm。另一方面,對(duì)于最大化頻譜能效的用戶而言,功率將被調(diào)整到一個(gè)適合的大小。

     圖5和圖6分別統(tǒng)計(jì)了兩種目標(biāo)下,不同信道和不同調(diào)制方式被應(yīng)用的概率。針對(duì)通信目標(biāo)1,CR首選信道5并采用16QAM的調(diào)制方式(5信道帶寬大且傳播損耗相對(duì)較小),而針對(duì)目標(biāo)2,CR首選信道傳播損耗最小的信道6,并應(yīng)用調(diào)制階數(shù)最高的64QAM調(diào)制方式。

    本文針對(duì)認(rèn)知無(wú)線電中環(huán)境部分可觀測(cè),信道統(tǒng)計(jì)信息先驗(yàn)未知,且系統(tǒng)的目標(biāo)、環(huán)境與配置間的關(guān)系不明確,需要通過(guò)學(xué)習(xí)進(jìn)行配置決策的問(wèn)題,提出了一種基于案例推理和模擬退火思想的認(rèn)知決策引擎算法,理論分析和仿真結(jié)果表明,該算法具有增量自學(xué)習(xí)、多目標(biāo)適用性、快速收斂等優(yōu)點(diǎn)。案例庫(kù)有廣泛借鑒性,可實(shí)現(xiàn)在不同節(jié)點(diǎn)間相互學(xué)習(xí)的功能,下一步可研究關(guān)于多節(jié)點(diǎn)合作的學(xué)習(xí)引擎的實(shí)現(xiàn)方法,如何應(yīng)用數(shù)據(jù)挖掘的方法從案例庫(kù)中提取出有用知識(shí)的問(wèn)題也有待進(jìn)一步研究。
參考文獻(xiàn)
[1] MITOLA J. Cognitive radio-making software radios  more personal[J]. IEEE Personal Communications, 1999,6(4):13-18.
[2] 汪李峰,魏勝群.認(rèn)知引擎技術(shù)[J].中興通信技術(shù),2009,15(04):05-09.
[3] CLANCY C,HECKER J,et al.Application of machine  learning to cognitive radio networks[J].IEEE Wireless Communications, 2007,14(4):47-52.
[4] RIESER C J. Biologically inspired cognitive radio engine model utilizing distributed genetic algorithms for secure and robust wireless communications and networking[D]. Blacksburg,VA,USA:Virginia Polytechnic Institute and State University, 2004.
[5] 趙知?jiǎng)牛焓烙睿嵤随?等.基于二進(jìn)制粒子群算法的認(rèn)知無(wú)線電決策引擎[J].物理學(xué)報(bào), 2009,58(7):5118-5125.
[6] NEWMAN T R, EVANS J B. Parameter sensitivity in cognitive radio adaptation engines[C]. New Frontiers in  Dynamic Spectrum Access Networks, DySPAN 2008, 3st IEEE International Symposium on, Chicago, IL(2008-01-05.

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
国产精品久久综合| 在线观看日韩av电影| 久久青草欧美一区二区三区| 亚洲一区亚洲| 中文日韩电影网站| 一本色道久久综合亚洲精品高清 | 亚洲精品资源美女情侣酒店| 在线观看三级视频欧美| 狠狠色丁香婷综合久久| 国产日产亚洲精品| 国产日韩欧美| 国产一区二区在线观看免费播放| 国产欧美一区二区精品忘忧草 | 一区二区三区色| 一本久久a久久精品亚洲| 99精品欧美一区二区蜜桃免费| 亚洲激情视频网| 亚洲娇小video精品| 91久久精品国产91久久性色| 亚洲激情网站| 日韩亚洲欧美成人| 一区二区三欧美| 亚洲性视频网站| 亚洲欧美国产精品桃花| 午夜精品理论片| 欧美在线一区二区| 久久久久久久久久久成人| 久久婷婷影院| 欧美freesex8一10精品| 欧美成人一区二区三区片免费| 欧美成人一区二区三区| 欧美伦理在线观看| 欧美午夜精品一区二区三区| 欧美午夜精品一区| 国产伦精品一区二区三区在线观看| 国产欧美短视频| 国内精品视频久久| 亚洲黄色高清| 99精品欧美一区二区三区综合在线| 国产精品99久久99久久久二8| 亚洲免费视频观看| 亚洲成人在线视频播放| 亚洲精品四区| 亚洲在线不卡| 久久嫩草精品久久久久| 欧美经典一区二区| 国产精品国产三级国产专区53| 国产日韩精品久久| 在线观看视频一区二区| 日韩视频免费在线观看| 亚洲午夜视频在线| 欧美在线啊v一区| 久久精品国产精品| 一区二区三区你懂的| 欧美影院精品一区| 欧美国产欧美亚洲国产日韩mv天天看完整 | 亚洲欧美日韩一区二区三区在线| 欧美在线影院| 欧美大片免费| 国产精品日韩在线播放| 一区二区三区中文在线观看| 日韩亚洲国产欧美| 午夜一区二区三区不卡视频| 亚洲精品裸体| 午夜精品亚洲| 欧美.www| 国产精品系列在线| 亚洲国产经典视频| 亚洲欧美日韩国产精品| 亚洲精品中文字| 欧美一区二区视频在线| 欧美91视频| 国产精品一区免费视频| 亚洲激情在线播放| 欧美一区二区成人| 一区二区久久久久| 美女网站久久| 国产精品香蕉在线观看| 亚洲美女视频在线观看| 亚洲成人直播| 欧美一级黄色录像| 欧美日韩亚洲一区在线观看| 136国产福利精品导航| 校园激情久久| 亚洲无毛电影| 欧美精品一区二区三区在线播放 | 久久国产高清| 亚洲欧洲av一区二区| 欧美日本三级| 亚洲福利视频网站| 欧美怡红院视频| 午夜精品理论片| 欧美日韩视频一区二区三区| 亚洲高清久久| 亚洲第一网站免费视频| 亚久久调教视频| 欧美日本三级| 国产精品萝li| 亚洲国产成人久久综合| 香港久久久电影| 在线亚洲一区二区| 欧美另类综合| 精品动漫3d一区二区三区| 亚洲视频观看| 99pao成人国产永久免费视频| 欧美伊人久久| 欧美大片国产精品| 在线看国产一区| 亚洲欧美国产另类| 亚洲一区国产一区| 欧美高清一区| 在线精品国精品国产尤物884a| 99v久久综合狠狠综合久久| 亚洲伦理自拍| 久热精品在线视频| 国产亚洲精品久久久久动| 亚洲视频久久| 一区二区三区精品视频| 久久久久www| 国产偷久久久精品专区| 亚洲午夜免费视频| 一本色道久久综合狠狠躁篇的优点 | 日韩亚洲成人av在线| 一区二区三区欧美亚洲| 男女精品网站| 激情av一区二区| 小辣椒精品导航| 欧美一区2区视频在线观看| 欧美手机在线视频| 亚洲一区不卡| 午夜精品美女久久久久av福利| 欧美日韩国产999| 亚洲国产91| 91久久中文字幕| 久热re这里精品视频在线6| 国产日本欧美视频| 亚洲女人天堂成人av在线| 亚洲欧美国产日韩中文字幕| 欧美色123| 一区二区高清在线| 亚洲小说春色综合另类电影| 欧美超级免费视 在线| 亚洲精品黄网在线观看| 99re视频这里只有精品| 欧美精品福利视频| 亚洲欧洲美洲综合色网| 亚洲精品在线观看免费| 欧美激情二区三区| 在线观看亚洲| 久久精品视频亚洲| 欧美伦理一区二区| 999亚洲国产精| 亚洲欧美日韩精品久久久久| 国产精品美女久久久久久久| 日韩网站在线| 午夜日韩在线| 国产一区二区欧美| 久久精品成人一区二区三区| 美女精品自拍一二三四| 亚洲国产精品久久久久久女王 | 日韩视频不卡中文| 亚洲欧美日韩精品一区二区 | 亚洲精品一区二区三区四区高清 | 亚洲午夜高清视频| 国产精品嫩草99av在线| 亚洲欧美在线观看| 久久久久久自在自线| 国产亚洲欧美日韩精品| 亚洲精品看片| 欧美午夜国产| 午夜激情综合网| 久久男女视频| 最新亚洲一区| 一区二区三区精品| 国内精品视频一区| 日韩视频免费观看高清完整版| 欧美视频一区二区三区四区| 亚洲欧美激情一区二区| 久久一区亚洲| 亚洲精品日韩激情在线电影 | 中文高清一区| 国产欧美日韩91| 久久精品一区蜜桃臀影院| 欧美成人一区二区三区片免费| 日韩网站在线观看| 欧美在线一区二区三区| 亚洲国产精品成人综合色在线婷婷| 在线亚洲一区二区| 国产美女扒开尿口久久久| 亚洲电影下载| 欧美视频中文字幕| 欧美在线免费观看亚洲| 欧美三级欧美一级| 欧美一区午夜视频在线观看| 欧美电影免费观看高清完整版| 99av国产精品欲麻豆| 久久久久九九九| 亚洲伦理在线免费看| 麻豆精品网站| 亚洲午夜久久久久久尤物|