《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 超高性能微波天線饋源系統的設計
超高性能微波天線饋源系統的設計
蘇麗萍 沈泉
摘要: 本文介紹了用于微波接力天線饋源中的C波段超高性能饋源系統的設計方法,利用高頻結構仿真軟件對其進行了優化設計。對一些重要的和不易調整的尺寸用加偏差的方法來確定加工精度。
Abstract:
Key words :

本文介紹了用于微波接力天線饋源中的C波段超高性能饋源系統的設計方法,利用高頻結構仿真軟件對其進行了優化設計。對一些重要的和不易調整的尺寸用加偏差的方法來確定加工精度。計算結果與實測結果吻合的較好,在4.4~5GHz的頻段中,整個饋源系統的駐波優于1.05,交叉極化鑒別率優于-40dB。
  關鍵詞:超高性能饋源系統 高頻結構仿真軟件

一、 概 述

  近幾年來,我國通信事業的飛速發展,微波接力通信天線也不斷地發展和完善,衛星通信系統的傳送網功能主要通過光纖,地面微波,空中衛星等通信方式來完成。從微波傳送系統所采用的新技術及傳送容量的角度來看,新一代的同步數字系列SDH微波通信系統替代了傳統意義上的PDH微波通信。為適應正在興起的SDH微波通信中頻率復用的發展,我們需要研制超高性能的微波天線。它應具有很高的前后比(F/D),很高的交叉極化鑒別率(XPD)和極低的電壓駐波比(VSWR)。因此,超高性能微波天線系統具有低的電壓駐波比(VSWR優于1.06或反射損耗大于30.7dB)和高的交叉極化鑒別率(大于38dB)。

二、 系統組成

  超高性能微波天線的饋源系統是由喇叭,正交器,扭波導,彎波導和波導饋線組成。其中喇叭和正交器是關鍵部件。
  1.喇叭
  適合超高性能微波天線的饋源的喇叭有多種[1][2]。本饋源采用帶有三個扼流槽的平面波紋喇叭,這種平面波紋喇叭具有旋轉對稱的方向圖,低的副瓣,低的交叉極化和穩定的相位中心。喇叭的結構如圖 1所示。它是由一個圓波導和三個同心圓環構成。為了改善喇叭的駐波特性,我們在喇叭口附近對稱地放置調配塊。為了防止異物等進入喇叭,需對喇叭口進行封閉。通常在喇叭口上加介質薄膜,一般介質薄膜均會使喇叭的駐波變壞,我們利用高頻仿真軟件對介質的位置與厚度進行調整,使之具有改善駐波的特性。優化后的喇叭駐波優于1.05。

t49-1.gif (4229 bytes)

圖 1 喇叭結構

  2.正交器
  在現代天饋系統中,頻率復用技術是利用頻率資源最經濟的方法之一,可達到擴大通信容量的目的。正交極化頻率復用技術是用雙極化天線來實現的,即在同一頻率上,利用極化正交特性傳輸兩路獨立的信號。正交極化頻率復用技術有兩種,即雙線極化和雙圓極化[3]。正交極化的合成和分離是在饋電系統中實現的。雙線極化頻率復用是用正交模耦合器(OMT)也稱極化分離器(簡稱正交器)完成的。
  正交器是常用的微波元件,但介紹其設計方法的文獻較少[4]。普通的正交器(如圖 2所示)雖然只表現為三個物理端口,但就電氣上來說是四端口器件。這是由于公共端口中有兩個正交的主模(圓波導中的TE11/TE*11模或方波導的TE10/TE01模)與其他兩個端口中各自的基模(矩形波導的TE10模或同軸線中的TEM模)匹配。
  正交器的作用是分離公共端口中兩個正交主模的獨立信號并將它們傳給單一信號端口的基模,使所有電端口匹配且在兩個獨立信號之間有高的交叉極化鑒別力。因此,理想正交器的散射矩陣為

gs5001.gif (1483 bytes)

  這里端口1和2代表位于物理公共端口的主模,端口3和4是基模接口,例如,分別在端口1與端口3和端口2與端口4之間提供直接連接。其相移滯后分別為φ1和φ2。
  正交器的形式有多種,其性能略有差異。一般主波導的形式有圓波導和方波導,在寬頻帶應用時也可采用四脊波導。與分支波導(也稱側臂)耦合的耦合孔的位置在錐縮(漸變或階梯)部分,也有用膜片或隔離柵短路耦合的。本文所介紹的正交器是在較窄的工作頻帶(10%~20%)內滿足高性能和低成本的要求。對高性能而言是要求有較小的反射損耗(VSWR)和高隔離(端口隔離和極化隔離);低成本則要求結構簡單,加工方便。
  為了保證正交器的性能,其最低工作頻率應滿足fmin>1.1fc。這樣圓波導正交器的最大工作帶寬約為17%,方波導正交器的最大工作帶寬約為25%。在這樣的帶寬內正交器隔離性能僅受結構尺寸和加工對稱性的影響。如果大于最高工作頻率,由于高次模的影響,正交器的隔離性能將變差。
  正交器的設計的準則是抑制高次模的產生,簡化結構,保證結構的對稱性,用較少的匹配元件實現各個端口的匹配。
  正交器設計的關鍵是方形或圓形波導分支耦合器的結構及兩個基模端口的匹配部分。我們所設計的正交器采用如圖 2所示的形式。整個設計過程中首先確定方波導的尺寸,然后設計直通口的方矩波導階梯過渡。最后確定側臂耦合孔位置。選取耦合孔的大小與位置應以盡可能減小對直臂的影響又能很好地耦合極化信號為宜。由于側臂耦合結構變量較多,對性能影響很大,優化側臂尺寸是十分必要的。

t50-1.gif (1580 bytes)

圖 2 C波段正交器

  對微波元件來說,通過求解Maxwell方程這一古典的方法來獲得其特性是困難的。由于高速度大容量計算機的出現。促進了各種數值分析方法的發展。在電磁場問題的數值計算領域出現了多種方法,如有限時域差分法(FDTD),模匹配法(MMT),傳輸線矩陣法(TLM)和有限元法(FEM)等。這些方法對處理各類電磁場問題是部分有效的,但都有所限制。相對而言,有限元法應用比較成熟,可以處理較多類型的電磁場問題,當然對計算機資源的要求也更高。基于有限元法的高頻結構仿真軟件HPHFSS為解決微波元件的分析方法提供了一種有效的手段。
  利用軟件優化設計過程實際上是一個加工調試的仿真過程,可以把過去用實驗方法確定的尺寸用計算機分析得到。側臂優化的計算量大,由于側臂尺寸對直通口性能影響較小而且側臂匹配的難度較大,對直通口的匹配影響可以選擇特定的元件來達到減小的目的。優化側臂的模型可利用其對稱性來減少計算量,彎波導優化后的駐波優于1.02。扭波導優化后的駐波優于1.04。
  微波元件性能的穩定性是設計的另一個重要目標之一。通常情況下,對于非諧振結構微波元件來說,尺寸對性能影響是平緩的(非激烈變化的),利用微擾結構尺寸的方法可達到檢驗計算結果,確定制造公差的目的。特別是對性能影響很大的尺寸公差的確定是很有必要的,可為合理分配公差,降低制造成本提供科學依據。
  3.饋源系統的優化設計方法
  饋源系統的性能優化是一個十分復雜的問題,各部分的尺寸變化都會影響性能。由于受計算機資源的限制,對整個饋源系統進行優化設計是困難的,采用對各微波元件進行優化設計后,再對各微波元件的連接關系(接口位置)進行優選,可以得到較好的系統性能。例如,喇叭的最大的回波損耗為-34dB,正交器的最大回波損耗為-32dB,通過優選喇叭與正交器的連接尺寸后,正交器加喇叭合成后最大回波損耗為-32.5dB。

三、 計算與實測性能

  喇叭優化后的VSWR和方向圖結果如圖 3所示,方波導正交器優化后的VSWR結果如圖 4所示,對正交器中的主要結構尺寸加微擾(尺寸加公差)后計算的VSWR如圖 5所示。從仿真結果來看,正交器中的主要結構尺寸的公差要求在+0.2%~+0.4%是適當的。整個饋源系統的VSWR結果如圖 6所示,它的交叉極化鑒別率如圖 7所示。

t51-1.gif (7575 bytes)

圖 3 喇叭優化后的VSWR和方向圖

t52-1.gif (7453 bytes)

圖 4 方波導正交器優化后的VSWR

t52-2.gif (8889 bytes)

圖 5 正交器中主要結構尺寸加微擾后的VSWR

t52-3.gif (10639 bytes)

圖 6 饋源系統的VSWR

t52-4.gif (5552 bytes)

圖 7 饋源系統的交叉極化鑒別率

四、 結 論

  本文介紹了C波段超高性能微波天線的饋源系統的設計方法。給出了計算和實測結果,提出了利用高頻結構仿真軟件確定微波元件制造公差的方法。整個系統的駐波優于1.05,交叉極化隔離優于40dB。該饋源系統已很好地應用于3.2m的微波中繼天線。

此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
亚洲精品一线二线三线无人区| 亚洲免费中文字幕| 伊伊综合在线| 国产精品日韩一区二区| 麻豆国产精品va在线观看不卡| 亚洲一区日韩在线| 亚洲欧洲日产国产网站| 欧美一区二区三区久久精品茉莉花 | 国产伦精品一区二区三区四区免费 | 欧美天天视频| 欧美精品一区二区三| 久久亚洲一区二区三区四区| 欧美一区二区三区四区视频| 亚洲午夜一区二区三区| 亚洲精品免费网站| 亚洲国产精品久久久久秋霞不卡| 午夜久久tv| 亚洲免费网站| 亚洲影院在线| 亚洲特色特黄| 一区二区免费在线视频| 亚洲国产网站| 亚洲高清久久久| 在线视频成人| 在线精品亚洲一区二区| 狠狠色丁香久久婷婷综合_中| 国产亚洲欧美另类中文| 国产伦精品一区二区三区四区免费| 国产精品久久久久久一区二区三区| 欧美日韩国产美| 欧美日本乱大交xxxxx| 欧美激情小视频| 欧美激情中文字幕一区二区| 欧美激情精品久久久六区热门| 免费欧美日韩| 欧美国产国产综合| 欧美xxx在线观看| 欧美96在线丨欧| 欧美成人午夜免费视在线看片| 鲁鲁狠狠狠7777一区二区| 久久久水蜜桃| 老色鬼久久亚洲一区二区 | 欧美 日韩 国产 一区| 麻豆精品精华液| 欧美ed2k| 欧美日韩成人| 欧美视频一区在线| 国产精品麻豆成人av电影艾秋| 国产精品色午夜在线观看| 国产欧美一区二区精品仙草咪 | 国产综合在线看| 在线观看日韩www视频免费| 国产一区二区0| 黄色成人av网| 亚洲电影自拍| 99国产麻豆精品| 亚洲一区免费网站| 欧美一区二区视频在线观看2020| 久久精品91久久久久久再现| 亚洲欧洲久久| 亚洲午夜电影网| 亚洲资源在线观看| 亚洲一二三区视频在线观看| 欧美在线观看视频一区二区三区| 久久久噜噜噜久久狠狠50岁| 欧美刺激性大交免费视频| 欧美日韩精品免费在线观看视频| 国产精品嫩草99a| 国内在线观看一区二区三区| 国产原创一区二区| 亚洲高清视频在线| 夜夜嗨av一区二区三区网页| 亚洲欧美日韩高清| 亚洲国产精品专区久久| 一区二区三区蜜桃网| 亚洲综合色婷婷| 久久综合九色综合欧美就去吻 | 国产亚洲精品资源在线26u| …久久精品99久久香蕉国产| 99re6热只有精品免费观看| 亚洲在线不卡| 亚洲国产影院| 亚洲一区二区在线播放| 久久久久九九九九| 欧美日韩国产欧| 国产日韩精品视频一区二区三区 | 亚洲精品久久久久久久久| 亚洲欧美国产一区二区三区| 亚洲精品美女在线| 一区二区欧美亚洲| 久久久久久久久蜜桃| 欧美日韩亚洲国产一区| 国产专区欧美精品| 一本色道久久综合狠狠躁篇怎么玩 | 亚洲国产aⅴ天堂久久| 亚洲一区激情| 久久精品国产亚洲精品| 亚洲一区日本| 免费亚洲一区| 欧美日韩一二区| 狠狠色综合色综合网络| 亚洲欧洲在线看| 久久精品一区二区| 亚洲综合色在线| 欧美国产在线视频| 国产欧美日韩一区二区三区| 亚洲精品免费一二三区| 亚洲精品一区二区三区福利| 欧美成人三级在线| 亚洲电影在线| 亚洲人成久久| 欧美大片一区二区| 在线国产日韩| 亚洲高清自拍| 美女露胸一区二区三区| 影音先锋成人资源站| 欧美一区免费视频| 久久久免费精品| 国自产拍偷拍福利精品免费一| 欧美在线免费播放| 久久全国免费视频| 伊伊综合在线| 亚洲美女淫视频| 欧美日韩午夜精品| 一二三区精品| 亚洲欧美一区二区三区在线| 国产精品久久久亚洲一区| 国产精品99久久久久久久vr | 欧美亚洲免费| 久久久.com| 激情亚洲网站| 亚洲人在线视频| 欧美久久婷婷综合色| 日韩一级黄色av| 亚洲欧美日本精品| 国产日韩欧美视频| 久久精品国产亚洲一区二区| 欧美va日韩va| 亚洲免费高清| 亚洲欧美日韩精品综合在线观看| 国产毛片一区二区| 亚洲国产精品999| 欧美精品18videos性欧美| 99国产精品视频免费观看| 午夜精品www| 狠狠做深爱婷婷久久综合一区| 亚洲狠狠婷婷| 欧美日韩1234| 午夜久久久久久| 欧美成人四级电影| 在线视频欧美日韩| 欧美自拍偷拍| 亚洲国产日韩欧美在线动漫| 亚洲一区www| 国内精品久久久久久影视8| 亚洲精品乱码久久久久| 国产精品国内视频| 欧美在线在线| 欧美激情一二区| 亚洲欧美国产日韩中文字幕| 美国成人直播| 一区二区欧美在线观看| 久久久国产成人精品| 亚洲七七久久综合桃花剧情介绍| 亚洲一区激情| 黄色另类av| 亚洲视频在线观看| 国产亚洲激情视频在线| 最新国产精品拍自在线播放| 国产精品久久久久国产a级| 亚洲电影免费观看高清| 欧美日韩免费观看一区二区三区 | 亚洲精品视频啊美女在线直播| 欧美视频在线观看 亚洲欧| 欧美一区二区三区在线视频 | 国产精品久在线观看| 亚洲电影一级黄| 欧美日韩在线观看一区二区| 欧美一二区视频| 欧美日本高清| 欧美一级黄色网| 欧美日韩亚洲国产精品| 久久成人免费网| 欧美丝袜一区二区三区| 亚洲国产高清一区| 国产精品婷婷午夜在线观看| 亚洲精品一区二区三区樱花| 国产精品亚洲综合| 亚洲免费观看高清在线观看| 国产无一区二区| 亚洲尤物视频网| 在线视频观看日韩| 欧美中文在线免费| 日韩特黄影片| 美女主播一区| 欧美在线播放视频| 国产精品免费一区豆花| 99日韩精品| 在线欧美日韩| 久久久www成人免费无遮挡大片|