《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 電源技術(shù) > 設(shè)計應(yīng)用 > 理解功率MOSFET的開關(guān)損耗
理解功率MOSFET的開關(guān)損耗
摘要: 本文詳細分析計算開關(guān)損耗,并論述實際狀態(tài)下功率MOSFET的開通過程和自然零電壓關(guān)斷的過程,從而使電子工程師知道哪個參數(shù)起主導(dǎo)作用并更加深入理解MOSFET。
Abstract:
Key words :

  本文詳細分析計算開關(guān)損耗,并論述實際狀態(tài)下功率MOSFET的開通過程和自然零電壓關(guān)斷的過程,從而使電子工程師知道哪個參數(shù)起主導(dǎo)作用并更加深入理解MOSFET。

  MOSFET開關(guān)損耗

  1 開通過程中MOSFET開關(guān)損耗

  功率MOSFET的柵極電荷特性如圖1所示。值得注意的是:下面的開通過程對應(yīng)著BUCK變換器上管的開通狀態(tài),對于下管是0電壓開通,因此開關(guān)損耗很小,可以忽略不計。

MOSFET開關(guān)過程中柵極電荷特性

圖1 MOSFET開關(guān)過程中柵極電荷特性

  開通過程中,從t0時刻起,柵源極間電容開始充電,柵電壓開始上升,柵極電壓為

公式

  其中:公式,VGS為PWM柵極驅(qū)動器的輸出電壓,Ron為PWM柵極驅(qū)動器內(nèi)部串聯(lián)導(dǎo)通電阻,Ciss為MOSFET輸入電容,Rg為MOSFET的柵極電阻。

  VGS電壓從0增加到開啟閾值電壓VTH前,漏極沒有電流流過,時間t1為

公式

  VGS電壓從VTH增加到米勒平臺電壓VGP的時間t2為

公式

  VGS處于米勒平臺的時間t3為

公式

  t3也可以用下面公式計算:

公式

  注意到了米勒平臺后,漏極電流達到系統(tǒng)最大電流ID,就保持在電路決定的恒定最大值ID,漏極電壓開始下降,MOSFET固有的轉(zhuǎn)移特性使柵極電壓和漏極電流保持比例的關(guān)系,漏極電流恒定,因此柵極電壓也保持恒定,這樣?xùn)艠O電壓不變,柵源極間的電容不再流過電流,驅(qū)動的電流全部流過米勒電容。過了米勒平臺后,MOSFET完全導(dǎo)通,柵極電壓和漏極電流不再受轉(zhuǎn)移特性的約束,就繼續(xù)地增大,直到等于驅(qū)動電路的電源的電壓。

  MOSFET開通損耗主要發(fā)生在t2和t3時間段。下面以一個具體的實例計算。輸入電壓12V,輸出電壓3.3V/6A,開關(guān)頻率350kHz,PWM柵極驅(qū)動器電壓為5V,導(dǎo)通電阻1.5Ω,關(guān)斷的下拉電阻為0.5Ω,所用的MOSFET為AO4468,具體參數(shù)為Ciss=955pF,Coss=145pF,Crss=112pF,Rg=0.5Ω;當(dāng)VGS=4.5V,Qg=9nC;當(dāng)VGS=10V,Qg=17nC,Qgd=4.7nC,Qgs=3.4nC;當(dāng)VGS=5V且ID=11.6A,跨導(dǎo)gFS=19S;當(dāng)VDS=VGS且ID=250μA,VTH=2V;當(dāng)VGS=4.5V且ID=10A,RDS(ON)=17.4mΩ。

  開通時米勒平臺電壓VGP:

公式

  計算可以得到電感L=4.7μH.,滿載時電感的峰峰電流為1.454A,電感的谷點電流為5.273A,峰值電流為6.727A,所以,開通時米勒平臺電壓VGP=2+5.273/19=2.278V,可以計算得到:

公式

公式

  開通過程中產(chǎn)生開關(guān)損耗為

公式

  開通過程中,Crss和米勒平臺時間t3成正比,計算可以得出米勒平臺所占開通損耗比例為84%,因此米勒電容Crss及所對應(yīng)的Qgd在MOSFET的開關(guān)損耗中起主導(dǎo)作用。Ciss=Crss+Cgs,Ciss所對應(yīng)電荷為Qg。對于兩個不同的MOSFET,兩個不同的開關(guān)管,即使A管的Qg和Ciss小于B管的,但如果A管的Crss比B管的大得多時,A管的開關(guān)損耗就有可能大于B管。因此在實際選取MOSFET時,需要優(yōu)先考慮米勒電容Crss的值。

  減小驅(qū)動電阻可以同時降低t3和t2,從而降低開關(guān)損耗,但是過高的開關(guān)速度會引起EMI的問題。提高柵驅(qū)動電壓也可以降低t3時間。降低米勒電壓,也就是降低閾值開啟電壓,提高跨導(dǎo),也可以降低t3時間從而降低開關(guān)損耗。但過低的閾值開啟會使MOSFET容易受到干擾誤導(dǎo)通,增大跨導(dǎo)將增加工藝復(fù)雜程度和成本。

  2 關(guān)斷過程中MOSFET開關(guān)損耗

  關(guān)斷的過程如圖1所示,分析和上面的過程相同,需注意的就是此時要用PWM驅(qū)動器內(nèi)部的下拉電阻0.5Ω和Rg串聯(lián)計算,同時電流要用最大電流即峰值電流6.727A來計算關(guān)斷的米勒平臺電壓及相關(guān)的時間值:VGP=2+6.727/19=2.354V。

公式

  關(guān)斷過程中產(chǎn)生開關(guān)損耗為:

公式

  Crss一定時,Ciss越大,除了對開關(guān)損耗有一定的影響,還會影響開通和關(guān)斷的延時時間,開通延時為圖1中的t1和t2,圖2中的t8和t9。

斷續(xù)模式工作波形

圖2 斷續(xù)模式工作波形

  Coss產(chǎn)生開關(guān)損耗與對開關(guān)過程的影響

  1 Coss產(chǎn)生的開關(guān)損耗

  通常,在MOSFET關(guān)斷的過程中,Coss充電,能量將儲存在其中。Coss同時也影響MOSFET關(guān)斷過程中的電壓的上升率dVDS/dt,Coss越大,dVDS/dt就越小,這樣引起的EMI就越小。反之,Coss越小,dVDS/dt就越大,就越容易產(chǎn)生EMI的問題。

  但是,在硬開關(guān)的過程中,Coss又不能太大,因為Coss儲存的能量將在MOSFET開通的過程中,放電釋放能量,將產(chǎn)生更多的功耗降低系統(tǒng)的整體效率,同時在開通過程中,產(chǎn)生大的電流尖峰。

 

  開通過程中大的電流尖峰產(chǎn)生大的電流應(yīng)力,瞬態(tài)過程中有可能損壞MOSFET,同時還會產(chǎn)生電流干擾,帶來EMI的問題;另外,大的開通電流尖峰也會給峰值電流模式的PWM控制器帶來電流檢測的問題,需要更大的前沿消隱時間,防止電流誤檢測,從而降低了系統(tǒng)能夠工作的最小占空比值。

  Coss產(chǎn)生的損耗為:

公式

  對于BUCK變換器,工作在連續(xù)模式時,開通時MOSFET的電壓為輸入電源電壓。當(dāng)工作在斷續(xù)模式時,由于輸出電感以輸出電壓為中心振蕩,Coss電壓值為開通瞬態(tài)時MOSFET的兩端電壓值,如圖2所示。

  2 Coss對開關(guān)過程的影響

  圖1中VDS的電壓波形是基于理想狀態(tài)下,用工程簡化方式來分析的。由于Coss存在,實際的開關(guān)過程中的電壓和電流波形與圖1波形會有一些差異,如圖3所示。下面以關(guān)斷過程為例說明。基于理想狀態(tài)下,以工程簡化方式,認為VDS在t7時間段內(nèi)線性地從最小值上升到輸入電壓,電流在t8時間段內(nèi)線性地從最大值下降到0。

MOSFET開關(guān)過程中實際波形

圖3 MOSFET開關(guān)過程中實際波形

  實際過程中,由于Coss影響,大部分電流從MOSFET中流過,流過Coss的非常小,甚至可以忽略不計,因此Coss的充電速度非常慢,電流VDS上升的速率也非常慢。也可以這樣理解:正是因為Coss的存在,在關(guān)斷的過程中,由于電容電壓不能突變,因此VDS的電壓一直維持在較低的電壓,可以認為是ZVS,即0電壓關(guān)斷,功率損耗很小。

  同樣的,在開通的過程中,由于Coss的存在,電容電壓不能突變,因此VDS的電壓一直維持在較高的電壓,實際的功率損耗很大。

  在理想狀態(tài)的工程簡化方式下,開通損耗和關(guān)斷損耗基本相同,見圖1中的陰影部分。而實際的狀態(tài)下,關(guān)斷損耗很小而開通損耗很大,見圖3中的陰影部分。

  從上面的分析可以看出:在實際的狀態(tài)下,Coss將絕大部分的關(guān)斷損耗轉(zhuǎn)移到開通損耗中,但是總的開關(guān)功率損耗基本相同。圖4波形可以看到,關(guān)斷時,VDS的電壓在米勒平臺起始時,電壓上升速度非常慢,在米勒平臺快結(jié)束時開始快速上升。

 非連續(xù)模式開關(guān)過程中波形

圖4 非連續(xù)模式開關(guān)過程中波形

  Coss越大或在DS極額外的并聯(lián)更大的電容,關(guān)斷時MOSFET越接近理想的ZVS,關(guān)斷功率損耗越小,那么更多能量通過Coss轉(zhuǎn)移到開通損耗中。為了使MOSFET整個開關(guān)周期都工作于ZVS,必須利用外部的條件和電路特性,實現(xiàn)其在開通過程的ZVS。如同步BUCK電路下側(cè)續(xù)流管,由于其寄生的二極管或并聯(lián)的肖特基二極管先導(dǎo)通,然后續(xù)流的同步MOSFET才導(dǎo)通,因此同步MOSFET是0電壓導(dǎo)通ZVS,而其關(guān)斷是自然的0電壓關(guān)斷ZVS,因此同步MOSFET在整個開關(guān)周期是0電壓的開關(guān)ZVS,開關(guān)損耗非常小,幾乎可以忽略不計,所以同步MOSFET只有RDS(ON)所產(chǎn)生的導(dǎo)通損耗,選取時只需要考慮RDS(ON)而不需要考慮Crss的值。

  注意到圖1是基于連續(xù)電流模式下所得到的波形,對于非連續(xù)模式,由于開通前的電流為0,所以,除了Coss放電產(chǎn)生的功耗外,沒有開關(guān)的損耗,即非連續(xù)模式下開通損耗為0。但在實際的檢測中,非連續(xù)模式下仍然可以看到VGS有米勒平臺,這主要是由于Coss的放電電流產(chǎn)生的。Coss放電快,持續(xù)的時間短,這樣電流迅速降低,由于VGS和ID的受轉(zhuǎn)移特性的約束,所以當(dāng)電流突然降低時,VGS也會降低,VGS波形前沿的米勒平臺處產(chǎn)生一個下降的凹坑,并伴隨著振蕩。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
免费成人小视频| 韩国av一区二区| 玖玖玖国产精品| 欧美中日韩免费视频| 亚洲午夜激情| 一区二区三区导航| 一区二区高清视频| 日韩午夜免费视频| 亚洲精品在线三区| 亚洲精品乱码久久久久久日本蜜臀| 欧美影院午夜播放| 久久国产精品第一页| 欧美一区二视频| 欧美在线免费| 亚洲国产一区二区三区高清| 久久精品国产99国产精品澳门| 欧美影视一区| 久久精品亚洲国产奇米99| 欧美综合激情网| 久久精品免视看| 最新69国产成人精品视频免费| 亚洲高清色综合| 亚洲精品美女久久7777777| 亚洲乱码日产精品bd| avtt综合网| 亚洲一区二区免费视频| 亚洲欧美激情诱惑| 性做久久久久久免费观看欧美| 欧美在线观看日本一区| 久久久综合视频| 欧美成人一区二区三区| 欧美绝品在线观看成人午夜影视| 欧美另类极品videosbest最新版本| 欧美久色视频| 国产精品欧美久久久久无广告| 国产精品综合网站| 黄网站免费久久| 最新国产成人在线观看| 一区二区三区四区五区精品视频| 亚洲永久在线观看| 久久精品国产精品亚洲精品| 亚洲狼人综合| 亚洲欧美日韩天堂一区二区| 久久不射网站| 欧美成人亚洲成人日韩成人| 欧美日韩在线三区| 国产欧美日韩精品在线| 在线观看精品| 一本久道久久综合狠狠爱| 亚洲欧美在线一区| 亚洲黄色一区| 亚洲一区二区三区精品视频| 久久激情综合网| 欧美精品久久久久久久免费观看| 国产精品久久久久久久第一福利| 国模精品一区二区三区色天香| 亚洲国产精品电影在线观看| 亚洲视频一二| 亚洲国产国产亚洲一二三| 99视频一区二区| 欧美在线视频全部完| 欧美精品在线看| 国产一区清纯| 日韩网站在线观看| 久久黄色网页| 亚洲综合欧美日韩| 另类天堂av| 国产精品视频99| 亚洲国产99| 欧美亚洲视频一区二区| 99riav1国产精品视频| 欧美主播一区二区三区| 欧美精品18| 国产午夜精品一区二区三区视频| 亚洲欧洲在线一区| 欧美一区二区三区啪啪| 艳妇臀荡乳欲伦亚洲一区| 久久精品国产亚洲一区二区三区 | 在线成人性视频| 亚洲一级在线| 一本色道久久综合狠狠躁篇怎么玩| 欧美一区二区免费| 欧美日韩午夜精品| 在线国产精品播放| 性欧美大战久久久久久久久| 一区二区日韩伦理片| 老司机亚洲精品| 国产偷国产偷精品高清尤物| 国产精品99久久久久久有的能看| 亚洲欧洲精品一区二区三区不卡 | 亚洲精品乱码久久久久| 久久精品一区二区| 国产精品theporn| 亚洲精品在线视频| 亚洲黄色毛片| 老司机成人网| 韩日午夜在线资源一区二区| 午夜精品福利一区二区三区av| 中文一区字幕| 欧美激情2020午夜免费观看| 激情欧美一区| 欧美一区二视频| 欧美在线视频二区| 国产免费一区二区三区香蕉精| 亚洲午夜免费视频| 亚洲一区二区三区四区视频| 欧美噜噜久久久xxx| 亚洲国产精品久久久久久女王| 久久精品一区| 久久先锋影音av| 激情欧美日韩一区| 久久精品久久99精品久久| 久久蜜臀精品av| 狠狠色狠狠色综合日日tαg| 欧美一区二区三区四区夜夜大片| 欧美一区二区黄| 国产视频欧美| 欧美在线黄色| 久久人人精品| 精品1区2区3区4区| 亚洲国产精品久久久久秋霞蜜臀 | 一本色道**综合亚洲精品蜜桃冫 | 亚洲另类春色国产| 中日韩在线视频| 欧美日韩中文字幕精品| 日韩视频一区二区三区| 在线亚洲欧美视频| 国产精品久久精品日日| 亚洲在线中文字幕| 欧美中在线观看| 极品少妇一区二区三区| 91久久中文| 欧美日韩免费观看一区| 日韩亚洲在线观看| 亚洲免费在线观看| 国产欧美视频一区二区| 欧美影院午夜播放| 欧美mv日韩mv国产网站app| 亚洲欧洲一区| 午夜精品成人在线视频| 国产日韩欧美| 亚洲激情视频网站| 欧美高清视频在线观看| 亚洲美女av电影| 亚洲专区欧美专区| 国产午夜精品视频| 亚洲欧洲日产国产网站| 欧美日韩成人一区二区三区| 在线一区二区三区四区| 欧美一区二区在线视频| 精品动漫一区| 亚洲视频999| 国产麻豆午夜三级精品| 久久xxxx精品视频| 欧美日本韩国| 亚洲欧美精品在线| 蜜臀av在线播放一区二区三区| 亚洲清纯自拍| 午夜精品久久久久久久久| 韩国三级在线一区| 夜色激情一区二区| 国产日韩欧美在线播放| 91久久久久久国产精品| 国产精品www994| 亚洲国产导航| 欧美视频中文字幕| 久久精品亚洲精品国产欧美kt∨| 欧美精品免费播放| 亚洲天堂av在线免费| 久久伊人亚洲| 一本大道av伊人久久综合| 久久九九有精品国产23| 亚洲精品国产无天堂网2021| 羞羞答答国产精品www一本| 亚洲国产精品久久91精品| 亚洲欧美视频在线观看视频| 在线观看亚洲专区| 欧美一区二区高清在线观看| 亚洲国产成人精品女人久久久 | 亚洲欧美日韩天堂一区二区| 欧美电影免费| 亚洲欧美日韩综合aⅴ视频| 欧美大片在线看| 午夜精品一区二区三区在线播放 | 亚洲国产精品成人| 国产精品欧美风情| 日韩视频精品在线| 国产一区二区三区日韩欧美| 一本久久综合亚洲鲁鲁| 国产真实乱子伦精品视频| 亚洲视频在线一区| 在线播放一区| 欧美怡红院视频| 日韩网站在线观看| 欧美顶级大胆免费视频| 欧美在线观看你懂的| 国产精品啊啊啊| 亚洲美女av在线播放| 激情国产一区二区| 欧美一级电影久久|