《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于深度學習的物聯網入侵檢測系統綜述
基于深度學習的物聯網入侵檢測系統綜述
網絡安全與數據治理
周品希,沈岳,李偉
湖南農業大學信息與智能科學技術學院
摘要: 物聯網中智能設備的互聯互通在推動社會進步的同時,也因設備異構性、協議多樣性和資源受限性導致安全威脅日益復雜化。傳統入侵檢測系統依賴特征匹配和規則定義,在面對新型攻擊和動態攻擊模式時表現出局限性。系統梳理了深度學習技術在物聯網入侵檢測系統中的應用進展,通過對比分析發現:基于深度學習的模型在檢測精度和實時性上優于傳統方法,在處理空間特征、捕捉時序依賴等方面表現突出;無監督學習和集成方法通過生成對抗樣本、融合多模型優勢,有效提升了小樣本場景下的檢測魯棒性;當前研究仍面臨數據標注成本高、邊緣計算資源受限、動態攻擊適應性不足等挑戰。總結探討了未來研究應聚焦輕量化、跨模態數據融合等方向,為構建高效、自適應的物聯網安全防護體系提供理論支撐。
中圖分類號:TP393.08文獻標識碼:ADOI:10.19358/j.issn.2097-1788.2025.06.001
引用格式:周品希,沈岳,李偉. 基于深度學習的物聯網入侵檢測系統綜述[J].網絡安全與數據治理,2025,44(6):1-10.
A review of IoT intrusion detection systems based on deep learning
Zhou Pinxi,Shen Yue,Li Wei
College of Information and Intelligence, Hunan Agricultural University
Abstract: While the interconnection of smart devices in the Internet of Things promotes social progress, it also leads to increasingly complex security threats due to device heterogeneity, protocol diversity and resource constraints. Traditional intrusion detection systems rely on feature matching and rule definition, and show limitations when facing new attacks and dynamic attack patterns. This paper systematically sorts out the application progress of deep learning technology in the intrusion detection system of the Internet of Things. Through comparative analysis, it is found that the model based on deep learning is superior to traditional methods in detection accuracy and real-time performance, and has outstanding performance in processing spatial features and capturing temporal dependencies. Unsupervised learning and integration methods effectively improve the detection robustness in small sample scenarios by generating adversarial samples and integrating the advantages of multiple models. Current research still faces challenges such as high data annotation costs, limited edge computing resources, and insufficient adaptability to dynamic attacks. This paper summarizes and discusses the directions that future research should focus on, such as lightweight and cross-modal data fusion, to provide theoretical support for building an efficient and adaptive Internet of Things security protection system.
Key words : network security; Internet of Things; intrusion detection; deep learning

引言

物聯網(Internet of Things, IoT)的快速發展正深刻地改變著人們的生活方式和社會的運行模式。目前,物聯網應用已經覆蓋了智能家居、醫療健康、工業控制、智慧農業等各個領域。然而,物聯網設備的廣泛部署和互聯互通也帶來了嚴重的安全隱患。由于物聯網設備資源受限、異構性強、通信協議多樣等原因,以往的網絡安全防護手段難以適應這一復雜的環境,導致物聯網系統頻繁成為網絡攻擊的目標,嚴重威脅著個人隱私、企業利益及國家安全[1-2]。

入侵檢測系統(Intrusion Detection System, IDS)憑借其能夠實時監控網絡流量,檢測并響應異常行為,被廣泛應用于物聯網安全領域中。早期的IDS主要依賴于特征匹配[3]和規則定義[4],然而隨著網絡規模的大幅擴張以及網絡處理節點數量的激增,重要數據在不同的網絡節點之間生成和共享,同時舊攻擊發生突變或產生大量新型攻擊,數據傳輸量的劇增和攻擊方式的多變使其檢測效果滿足不了當前需求。

近年來,隨著深度學習在眾多領域的廣泛應用,研究人員探索了多種深度學習模型,以應對物聯網環境中復雜多變的安全威脅。在物聯網入侵檢測中,深度學習可以從大量的網絡流量和設備行為中挖掘隱蔽的模式,自動學習攻擊特征,減少對人工規則的依賴。


本文詳細內容請下載:

http://www.jysgc.com/resource/share/2000006574


作者信息:

周品希,沈岳,李偉

(湖南農業大學信息與智能科學技術學院,湖南長沙410000) 


Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 久久经典免费视频| 国产精品你懂得| 韩国理论福利片午夜| 精品国产免费观看久久久| 美女张开双腿让男生捅| 欧美精品v国产精品v| 日本人与动zozo| 国内大量揄拍人妻精品視頻| 国产午夜精品一区二区三区 | 狠狠久久永久免费观看| 波多野结衣免费观看视频| 日本狂喷奶水在线播放212| 成年私人影院免费视频网站| 天天爱天天操天天干| 女性成人毛片a级| 天堂在线免费观看中文版| 国产视频福利在线| 国产成人精品999在线观看| 国产做无码视频在线观看| 国产亚洲人成网站在线观看| 啊轻点灬大ji巴太粗太长了h| 又粗又硬又大又爽免费视频播放| 人妻久久久一区二区三区| 亚洲欧美在线观看视频| 亚洲AV无码一区二区三区网址| 中文字幕无线码一区二区| 99国产欧美另类久久久精品| 91免费国产在线观看| 在线观看91精品国产入口| 一级毛片国产**永久在线| 免费观看成人羞羞视频软件| 色费女人18女人毛片免费视频| 精品国产精品久久一区免费式| 最新欧洲大片免费在线| 在线视频www| 午夜视频在线观看免费完整版| 久久青草免费91线频观看不卡| 91精品欧美成人| 精品人妻少妇一区二区| 日本黄网站动漫视频免费| 国产精品高清2021在线|