《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 生成式人工智能訓(xùn)練數(shù)據(jù)風(fēng)險的規(guī)制路徑研究
生成式人工智能訓(xùn)練數(shù)據(jù)風(fēng)險的規(guī)制路徑研究
網(wǎng)絡(luò)安全與數(shù)據(jù)治理
邢露元1,沈心怡2,王嘉怡3
1 南京大學(xué) 法學(xué)院,江蘇南京210046;2 倫敦政治經(jīng)濟學(xué)院法學(xué)院,英國倫敦WC2A 2AE; 3 東北農(nóng)業(yè)大學(xué)文理學(xué)院,黑龍江哈爾濱150030
摘要: 探討了生成式人工智能如ChatGPT在訓(xùn)練數(shù)據(jù)方面的法律風(fēng)險與規(guī)制問題。首先分析了生成式人工智能在數(shù)據(jù)來源、歧視傾向、數(shù)據(jù)質(zhì)量以及安全風(fēng)險等方面的問題,通過對中歐法律體系的比較研究,建議明確界定治理原則,并針對數(shù)據(jù)合規(guī)性制定完善路徑。最后,從具體措施層面,對中國現(xiàn)行的法律規(guī)制提出了具體的完善建議,為生成式人工智能的健康發(fā)展與法律規(guī)制提供有益參考。
中圖分類號:DF9文獻(xiàn)標(biāo)識碼:ADOI:10.19358/j.issn.2097-1788.2024.01.002
引用格式:邢露元,沈心怡,王嘉怡.生成式人工智能訓(xùn)練數(shù)據(jù)風(fēng)險的規(guī)制路徑研究[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2024,43(1):10-18.
Legal regulation and enhancement path for mitigating risks in training
Xing Luyuan1,Shen Xinyi2,Wang Jiayi3
1 School of Law, Nanjing University, Nanjing 210046, China; 2 School of Law, London School of Economics and Political Science, London WC2A 2AE, England;3 School of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China
Abstract: This article discusses the legal risks and regulatory issues of generative artificial intelligence such as ChatGPT in training data. It begins by analyzing issues related to the sources of data, tendencies towards discrimination, data quality, and security risks in generative AI. Subsequently, the article undertakes a comparative study of Chinese and European legal systems, proposing the clear definition of governance principles and the development of comprehensive pathways for data compliance. Finally, the article offers specific recommendations from a practical standpoint for the improvement of the current legal regulations in China. These suggestions are intended to serve as proper references for the healthy development and legal regulation of generative artificial intelligence.
Key words : generative AI; artificial intelligence act; training data risks; data compliance

生成式人工智能中的訓(xùn)練數(shù)據(jù)風(fēng)險不同于以往僅能進(jìn)行分類、預(yù)測或?qū)崿F(xiàn)特定功能的模型,生成式人工智能大模型(Large Generative AI Models,LGAIMs)經(jīng)過訓(xùn)練可生成新的文本、圖像或音頻等內(nèi)容,且具有強大的涌現(xiàn)特性和泛化能力[1]。訓(xùn)練數(shù)據(jù)表示為概率分布,LGAIMs可以實現(xiàn)自行學(xué)習(xí)訓(xùn)練數(shù)據(jù)中的模式和關(guān)系,可以生成訓(xùn)練數(shù)據(jù)集之外的內(nèi)容[2]。同時,LGAIMs與用戶之間進(jìn)行人機交互所產(chǎn)生的數(shù)據(jù)還會被用于大模型的迭代訓(xùn)練。LGAIMs的開發(fā)者往往需要使用互聯(lián)網(wǎng)上公開的數(shù)據(jù)以及和用戶的交互數(shù)據(jù)作為訓(xùn)練數(shù)據(jù),而這些數(shù)據(jù)可能存在諸多合規(guī)風(fēng)險,例如數(shù)據(jù)來源風(fēng)險、歧視風(fēng)險和質(zhì)量風(fēng)險。


作者信息:

邢露元1,沈心怡2,王嘉怡3

(1 南京大學(xué) 法學(xué)院,江蘇南京210046;2 倫敦政治經(jīng)濟學(xué)院法學(xué)院,英國倫敦WC2A 2AE;

3 東北農(nóng)業(yè)大學(xué)文理學(xué)院,黑龍江哈爾濱150030)


文章下載地址:http://www.jysgc.com/resource/share/2000005886


weidian.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 久久久久久久久66精品片| 亚洲欧美中文字幕高清在线一 | 精品视频香蕉尹人在线| 国产又粗又猛又爽又黄的免费视频| **一级毛片全部免| 国模杨依大胆张腿视频流露| freesex1718处xx| 宝贝过来趴好张开腿让我看看| 丰满饥渴老女人hd| 日本高清www无色夜在| 九色综合九色综合色鬼| 欧美同性videos视频| 亚洲欧洲精品成人久久曰| 波多野结衣绝顶大高潮| 健身私教弄了我好几次怎么办| 精品国产成人亚洲午夜福利| 啊快捣烂了啦h男男开荤粗漫画| 被三个男人绑着躁我好爽视频| 国产情侣真实露脸在线| 国产又污又爽又色的网站| 国产精品久久久久久影视| 7777奇米四色| 国产香蕉一区二区三区在线视频| av无码免费永久在线观看| 好男人在线社区www在线观看视频 好男人在线社区www在线视频一 | 国产精品一区久久| **毛片免费观看久久精品| 国产精品揄拍一区二区| 50岁丰满女人下面毛耸耸| 国内精品视频一区二区三区| 99热在线观看精品| 天堂а√在线最新版在线8| gogogo高清在线播放| 天天躁日日躁狠狠躁欧美老妇 | 欧美亚洲国产日韩电影在线| 亚洲国产成人精品无码区在线观看| 欧美日韩在线电影| 亚洲成人第一页| 欧美大片天天免费看视频| 亚洲国产av无码精品| 柳菁菁《萃5》专辑|