《電子技術應用》
您所在的位置:首頁 > 電源技術 > 設計應用 > 基于VMD-LSTM的非侵入式負荷識別方法
基于VMD-LSTM的非侵入式負荷識別方法
2023年電子技術應用第2期
王毅1,易歡1,李松濃2,馮凌3,劉期烈1,宋如楠4
1.重慶郵電大學 通信與信息工程學院, 重慶 400065;2.國網重慶市電力公司電力科學研究院, 重慶 400014; 3.國網重慶市電力公司營銷服務中心,重慶400014;4.中國電力科學研究院, 北京100192
摘要: 非侵入式負荷識別(Non-Intrusive Load Monitoring, NILM)技術僅基于家庭電源總入口處的電流、電壓信息,獲得室內電器設備的電氣信息。提高負荷識別的精度,對于優化能源結構、提高電能利用效率、降低能耗、節約資源具有重要意義。首先應用變分模態分解(Variational Mode Decomposition, VMD)對歸一化的電流信號分解為K個IMF分量,再估計各個分量與歸一化電流信號的相關系數,挑選相關系數最大的兩個分量作為負荷特征,輸入訓練好的LSTM神經網絡進行識別。算例測試結果表明,該方法在公開數據集PLAID上的識別率高達99%,在實驗室采集的數據集上的識別率為96.6%,證實了所提出方法對提升負荷識別精度有顯著效果。
中圖分類號:TM721
文獻標志碼:A
DOI: 10.16157/j.issn.0258-7998.223024
中文引用格式: 王毅,易歡,李松濃,等. 基于VMD-LSTM的非侵入式負荷識別方法[J]. 電子技術應用,2023,49(2):127-132.
英文引用格式: Wang Yi,Yi Huan,Li Songnong,et al. Non-intrusive load identification method based on VMD-LSTM[J]. Application of Electronic Technique,2023,49(2):127-132.
Non-intrusive load identification method based on VMD-LSTM
Wang Yi1,Yi Huan1,Li Songnong2,Feng Ling3,Liu Qilie1,Song Runan4
1.Communication and Information Engineering College, Chongqing University of Posts and Telecommunications, Chongqing 400067, China;2.Chongqing Electric Power Research Institute, Chongqing 400014, China; 3.Postdoctoral Workstation of the Chongqing Electric Power Corporation, Chongqing 400014, China; 4.China Electric Power Research Institute,Beijing100192,China
Abstract: Non-intrusive load monitoring (NILM) technology is only based on the current and voltage information of the main entrance of home power supply to obtain the electrical information of indoor electrical equipment. Improving the accuracy of load identification is of great significance to optimize the energy structure, improve the efficiency of power utilization and reduce energy consumption. Firstly, the normalized current signal is decomposed by using variational mode decomposition (VMD), and then the correlation coefficients between each component and the original current signal are calculated. The two components with the largest correlation coefficients are selected as the load characteristics and input into the trained LSTM neural network for identification. The test results of an example show that the recognition rate of this method is up to 99% on public data set PLAID and 96.6% on laboratory data set, which proves the effectiveness of this method.
Key words : variational mode decomposition;smart grid;LSTM;correlation coefficient

0 引言

    隨著社會的發展,電力成為社會的主要能源。電網是電力運輸、分配和使用的載體。保持智能電網的穩定運行是電力系統規劃和管理的根本目標[1]。負荷監測可以幫助電力公司獲得用戶的詳細用電信息,分析用戶用電信息可以為電力系統的規劃和智能調度提供指導意見[2]。對電力用戶來說,可以通過負荷監測結果分析自己的用電行為,制定合理的用電策略,降低用電成本,節約能源資源。侵入式負荷監測(Intrusive Load Monitoring, ILM)和非侵入式負荷監測(Non-Intrusive Load Monitoring, NILM)是電力監控的兩種手段。ILM系統需在每個家用電器的前端安裝測量傳感器,用以實時的記錄設備的用電信息,其成本與電器的數量成線性關系;NILM由美國麻省理工學院的Hart[3]教授于20世紀80年代提出,僅通過家庭入口處的電流電壓信息,采用算法得到各用電器的電氣信息。與ILM系統相比,NILM系統有安裝方便、成本低、保護隱私安全等優點。非侵入式負荷識別主要有兩種實現方法,即事件法[4]和分解法[5,6]。事件法檢測電器設備的啟動/關閉事件,以事件的瞬態變化為特征判斷電器的類型,從而推斷電器的實時工作狀態,實現電能的分解。分解法是直接從多負載疊加的電氣特性分解為每個電器特性最可能的組合。但隨著電器設備數量的增多,分解法的復雜度大大提高,而事件法則沒有上述缺點。事件法的關鍵在于對電器產生的負荷投切事件進行準確分類。




本文詳細內容請下載:http://www.jysgc.com/resource/share/2000005183




作者信息:

王毅1,易歡1,李松濃2,馮凌3,劉期烈1,宋如楠4

(1.重慶郵電大學 通信與信息工程學院,  重慶 400065;2.國網重慶市電力公司電力科學研究院,  重慶 400014;

3.國網重慶市電力公司營銷服務中心,重慶400014;4.中國電力科學研究院, 北京100192)




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 久久天天躁狠狠躁夜夜呲| 亚洲色偷偷偷综合网| 国产四虎免费精品视频| 国产草草影院ccyycom| 一区二区三区在线播放| 搡女人真爽免费视频大全软件| 乱子伦一级在线观看高清| 欧美日韩亚洲国产精品一区二区| 俺来也俺去啦久久综合网| 一级一级毛片看看| 欧美丰满大乳大屁股流白浆| 亚洲精品成人网站在线观看| 精品亚洲一区二区三区在线观看| 国产AV无码专区亚洲AV漫画| 韩国三级女电影完整版| 国产成人综合色视频精品| 青青草原在线视频| 国产精品第9页| 97久久精品无码一区二区天美| 天天躁日日躁狠狠躁欧美老妇| 久久天天躁狠狠躁夜夜呲| 极品尤物一区二区三区| 免费福利视频导航| 美女久久久久久| 国产成人精品综合在线观看| 香港三级欧美国产精品| 国产网站麻豆精品视频| 97日日碰曰曰摸日日澡| 在线观看国产情趣免费视频| jizzjizz丝袜老师| 日韩a在线播放| 亚洲熟妇色xxxxx欧美老妇| 猫咪AV成人永久网站在线观看| 免费大片黄在线观看日本| 精品人妻VA出轨中文字幕| 又粗又硬又爽的三级视频| 91九色视频在线观看| 国产欧美在线观看视频| 亚洲国产成人精品激情| 夜夜高潮夜夜爽夜夜爱爱一区| rh男男车车的车车免费网站|