《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于網絡表示學習的區塊鏈異常交易檢測
基于網絡表示學習的區塊鏈異常交易檢測
網絡安全與數據治理 4期
張曉琦1,白 雪2,李光松1,王永娟3
(1.信息工程大學 網絡空間安全學院,河南 鄭州450001; 2.中國船舶工業綜合技術經濟研究院,北京100081;3.河南省網絡密碼重點實驗室,河南 鄭州450001)
摘要: 由于具有巨大的流通市值、龐大的用戶量和賬戶匿名性的特點,區塊鏈交易頻繁受到盜竊、龐氏騙局、欺詐等異常行為的威脅。針對區塊鏈異常交易,提出一種網絡表示學習模型DeepWalk-Ba用于特征提取,以比特幣為例,對區塊鏈交易的網絡結構和屬性進行學習,從交易的鄰域結構中挖掘隱含信息作為節點特征,再使用5種有監督和1種無監督的機器學習算法進行異常檢測。實驗表明,有監督模型隨機森林表現最好,達到了99.3%的精確率和86.4%的召回率,比使用傳統的特征提取方法的異常檢測模型具有更好的檢測效果。
中圖分類號: TP311.1
文獻標識碼: A
DOI: 10.19358/j.issn.2097-1788.2022.04.002
引用格式: 張曉琦,白雪,李光松,等. 基于網絡表示學習的區塊鏈異常交易檢測[J].網絡安全與數據治理,2022,41(4):11-20.
Blockchain abnormal transaction detection based on network representation learning
Zhang Xiaoqi1,Bai Xue2,Li Guangsong1,Wang Yongjuan3
(1.School of Cyberspace Security,Information Engineering University,Zhengzhou 450001,China; 2.China Institute of Marine Technology & Economy,Beijing 100081,China; 3.Henan Key Laboratory of Network Cryptography Technology,Zhengzhou 450001,China)
Abstract: Due to its characteristics of huge circulation market value, user volume and anonymity of accounts, blockchain transactions are frequently threatened by abnormal behaviours such as theft, Ponzi scheme and fraud. This paper proposed a network representation learning model DeepWalk-Ba as feature extraction method, taking bitcoin as an example, to learn the network structure and attributes of blockchain transactions, and excavate hidden information from the neighborhood structure of transactions as features. Then, 5 supervised and 1 unsupervised machine learning algorithms were used for anomaly detection. The experiment indicated that the supervised model random forest performed best, with a precision of 99.3% and recall value of 86.4%. The detection effect was better than detection models using the traditional feature extraction methods.
Key words : lockchain;anomaly detection;network representation learning;random walk;machine learning

0 引言

區塊鏈是一種分布式加密賬本,為非信任成員可以安全地進行交易提供平臺,使得去中心化、低成本、點對點的交易成為可能,在金融、醫療、物流、物聯網等領域得到了廣泛應用。區塊鏈使用分布式存儲和集體維護來實現去中心化,使用SHA-256等非對稱加密算法和可靠存儲技術完成信用背書,保障了系統的開源、公開和安全。區塊鏈最成功的實踐是以比特幣為代表的加密數字貨幣,自2009年比特幣誕生以來,越來越多的加密數字貨幣涌現出來并進入金融市場。截至2021年12月31日,加密數字貨幣的種類超過了1.6萬種,用戶近3億。主流加密數字貨幣主要有比特幣、以太坊、萊特幣等,其中,比特幣在2021年11月達到了歷史最高單價68 928.90美元,流通市值達到1萬億美元。加密數字貨幣具有匿名性的特點,不需要用戶進行實名認證,因此越來越多的犯罪分子將加密貨幣作為犯罪工具,實施網絡和金融犯罪,如敲詐勒索、欺詐和洗錢等。2020年非法交易在所有加密貨幣交易中所占的比例為0.34%,總量達到100億美元,而在2021年,0.15%的加密貨幣交易與網絡犯罪、洗錢和恐怖主義融資等活動有關,其中詐騙案件共涉及資金約140億美元[1]。與加密貨幣相關的犯罪的發生增加了加密貨幣的價格波動,也為區塊鏈技術的發展帶來了不利的影響,還給社會帶來了安全問題,交易安全已成為區塊鏈系統生態的一個重要問題。對區塊鏈的異常交易進行檢測,挖掘交易中有用的信息,提高對區塊鏈犯罪的打擊效率已成為一個迫切需要解決的問題。同時,采用技術手段對區塊鏈交易中的異常進行檢測,也能為解決區塊鏈技術擴展到其他領域將要面臨的安全問題提供有意義的指導。因此,研究區塊鏈異常交易檢測方法具有重要現實意義。





本文詳細內容請下載:http://www.jysgc.com/resource/share/2000004984





作者信息:

張曉琦1,白  雪2,李光松1,王永娟3

(1.信息工程大學 網絡空間安全學院,河南 鄭州450001;

2.中國船舶工業綜合技術經濟研究院,北京100081;3.河南省網絡密碼重點實驗室,河南 鄭州450001)


微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 麻豆果冻传媒精品二三区| wwwjizzjizz| 欧美va天堂在线影院| 亚洲精品无码永久在线观看 | 香港三日本三级人妇三级99| 国产精品18久久久久久麻辣| 99久久久国产精品免费牛牛四川| 好痛太长太深弄死我了视频| 中文字幕中文字幕在线| 日本漫画大全彩漫| 久草精品视频在线播放| 欧美人猛交日本人xxx| 亚洲日韩在线观看免费视频| 波多野结衣办公室33分钟| 免费在线视频一区| 精品国产午夜福利在线观看 | 手机看片久久国产免费| 久久久精品2019中文字幕之3| 日韩高清电影在线观看| 亚洲一级毛片中文字幕| 欧美日韩国产精品自在自线| 亚洲精品狼友在线播放| 男人j进女人p免费视频不要下载的| 动漫美女被羞羞动漫小舞| 美女18隐私羞羞视频网站| 国产中文在线视频| 调教女m视频免费区视频在线观看| 国产成人一区二区三区精品久久| 色在线免费视频| 国产男女爽爽爽免费视频| 六月丁香激情综合成人| 国产精品成人va| 182tv免费视视频线路一二三| 国产综合在线观看视频| 91精品国产91久久久久久| 国精品无码一区二区三区在线蜜臀| 99在线热视频| 在线观看国产小屁孩cao大人| a级毛片在线观看| 夜色私人影院永久入口| A级毛片内射免费视频|