《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于注意力機制的無監督單目標跟蹤算法
基于注意力機制的無監督單目標跟蹤算法
信息技術與網絡安全 6期
林志雄,吳麗君,陳志聰
(福州大學 物理與信息工程學院,福建 福州350108)
摘要: 為提升目標跟蹤精度,設計一種基于注意力機制的無監督單目標跟蹤算法。該算法使用DCFNet網絡作為基本網絡,通過前向跟蹤和后向驗證實現無監督跟蹤。為結合上下文信息,引入特征融合方法,且將DCFNet網絡每一層所提取的特征通過雙線性池化調整分辨率以便進行特征融合;為關注不同特征通道上的關系,引入通道注意力機制SENet模塊;設計一個反向逐幀驗證方法,在反向驗證中間幀的基礎上再預測第一幀,進而減少判別位置的誤差。在公共數據集OTB-2015上的測試結果顯示,本算法AUC分數達60.6%,速度達61FPS。與無監督單目標跟蹤UDT算法相比,所設計算法取得了更優的目標跟蹤性能。
中圖分類號: TP391
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2022.06.009
引用格式: 林志雄,吳麗君,陳志聰. 基于注意力機制的無監督單目標跟蹤算法[J].信息技術與網絡安全,2022,41(6):50-56.
Unsupervised single target tracking algorithm based on attention mechanism
Lin Zhixiong,Wu Lijun,Chen Zhicong
(College of Physics and Information Engineering,Fuzhou University,Fuzhou 350108,China)
Abstract: In order to improve target tracking accuracy, this paper designs an unsupervised single target tracking algorithm based on attention mechanism. The algorithm uses the DCFNet network as the basic network to achieve unsupervised tracking through forward tracking and backward verification. In order to combine the context information, a feature fusion method is introduced, and the features extracted by each layer of the DCFNet network are adjusted for resolution by bilinear pooling for feature fusion; in order to pay attention to the relationship between different feature channels, a channel attention mechanism SENet module is introduced; a reverse frame-by-frame verification method is designed, and the first frame is predicted based on the reverse verification of the intermediate frame, thereby reducing the error of the discriminant position. The test results on the public dataset OTB-2015 show that the AUC score of this algorithm is 60.6% and the speed is 61FPS. Compared with the unsupervised single-target tracking UDT algorithm, the designed algorithm achieves better target tracking performance.
Key words : target tracking;unsupervised learning;feature fusion;attention mechanism

0 引言

目標跟蹤被廣泛應用于視頻監控和自動駕駛等領域。在給定視頻第一幀中目標位置后,目標跟蹤的任務是得到目標在后續幀中的位置信息。在有遮擋、變形和背景混亂等場景下, 準確有效地檢測和定位目標仍然是個難點。

深度網絡由于可以加強特征表示,被廣泛用于視覺目標跟蹤領域。TAO等人提出SINT網絡[1],首次利用孿生網絡提取特征,通過匹配初始目標的外觀識別候選圖像位置,實現目標跟蹤任務;BERTINETTO等人提出SiamFC(Siamses Fully Convolution)網絡[2],使用離線訓練的完全卷積孿生網絡作為跟蹤系統的基本網絡,大大提高了跟蹤性能;LI等人[3]提出了SiamRPN網絡,基于SiamFC網絡引入了區域提案網絡RPN模塊[4],讓跟蹤系統可以回歸位置、形狀,進一步提高性能并加速;在此之前,基于孿生網絡的跟蹤器往往使用較淺的網絡,很大原因在于深層網絡的填充會破壞平移不變性,導致跟蹤性能下降。LI等人[5]提出在訓練過程中引入位置均衡的采樣策略,來緩解網絡在訓練過程中存在的位置偏見問題,進而在SiamRPN網絡基礎上用了ResNet網絡[6]作為主干網絡,讓跟蹤模型性能不再受制于網絡的容量。

以上這些單目標跟蹤模型都是屬于有監督學習,有監督學習需要大量的有標記數據集,但是手動標記既昂貴又耗時。而互聯網上有大量的未標記視頻可供使用,因此無監督目標跟蹤算法具有更好的實際應用價值。WANG等人[7]提出了UDT(Unsupervised Deep Tracking)模型,通過將前向傳播和反向預測的結果進行一致性損失計算,實現在沒有標簽的情況下同樣優化模型。但在前向傳播過程中,跟蹤模型若預測的位置出錯,經過反向修正后可能會再回到正確的位置,這就會導致前向傳播的錯誤預測沒有被懲罰,降低了模型跟蹤性能。為此,WANG等人又進一步提出UDT+模型[8],通過多幀驗證方法懲罰前向傳播的錯誤預測,提升位置預測的準確性。




本文詳細內容請下載:http://www.jysgc.com/resource/share/2000004535





作者信息:

林志雄,吳麗君,陳志聰

(福州大學 物理與信息工程學院,福建 福州350108)




微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: www.jizzonline.com| 久久精品国产2020观看福利| 精品久久久久香蕉网| 日韩中文字幕在线观看视频| 亚洲成在人线中文字幕| 色综合久久综合欧美综合网| 在免费jizzjizz在线播 | 国产jizzjizz免费看jizz| 99久热re在线精品视频| 成人字幕网视频在线观看| 久久综合AV免费观看| 男女做污污无遮挡激烈免费| 国产一卡2卡3卡4卡网站免费 | 老司机永久免费网站在线观看| 在线观看成人网| 久久婷婷激情综合色综合俺也去| 男人的j进入女人的p的动态图| 国产va免费精品高清在线| 精品久久久久久蜜臂a∨| 成年美女黄网站色大片免费看| 亚洲欧美日本a∨在线观看| 草久视频在线观看| 国产日韩av在线播放| mm131嫩王语纯翘臀| 成人理伦电影在线观看| 久久婷婷五夜综合色频| 极品艳短篇集500丝袜txt| 午夜人妻久久久久久久久| 韩国三级中文字幕| 国产电影麻豆入口| 一本色道久久88综合日韩精品| 日本一本在线播放| 久久精品成人欧美大片免费| 欧美一级免费在线观看| 另类ts人妖一区二区三区| 18日本xxxxxxxxx视频| 在线观看国产一区二区三区| 一个人看的日本www| 成人性生交视频免费观看| 久久一区二区精品| 日产乱码卡1卡2卡三卡四在线 |