《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于投影法和卷積神經網絡的手寫漢字圖像分割研究
基于投影法和卷積神經網絡的手寫漢字圖像分割研究
2021年電子技術應用第11期
張 莉1,孟范澤1,劉思霖1,馮 銳1,王 鋼2,蔡 靖1
1.吉林大學 儀器科學與電氣工程學院,吉林 長春130026;2.北華大學,吉林 吉林132013
摘要: 為提高手寫漢字的識別率,針對手寫漢字的有效分割,建立了卷積神經網絡手寫漢字體識別模型,并對投影法和輪廓檢測法的適用性進行了對比分析。實驗結果顯示,相較于輪廓檢測法,投影法更適用于手寫漢字識別中對文字圖像的處理工作,可以實現對所需文字的有效切分,同時簡化手寫漢字識別網絡的設置并提高識別準確率。
中圖分類號: TN919.82
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.201085
中文引用格式: 張莉,孟范澤,劉思霖,等. 基于投影法和卷積神經網絡的手寫漢字圖像分割研究[J].電子技術應用,2021,47(11):73-75,80.
英文引用格式: Zhang Li,Meng Fanze,Liu Silin,et al. Application of projection method in the recognition of handwritten Chinese characters[J]. Application of Electronic Technique,2021,47(11):73-75,80.
Application of projection method in the recognition of handwritten Chinese characters
Zhang Li1,Meng Fanze1,Liu Silin1,Feng Rui1,Wang Gang2,Cai Jing1
1.College of Instrumentation & Electrical Engineering,Jilin University,Changchun 130026,China; 2.Beihua University,Jilin 132013,China
Abstract: In order to improve the recognition rate of handwritten Chinese characters and for the effective segmentation of handwritten Chinese characters, this paper established a handwriting Chinese font recognition model based on convolutional neural network, and compared and analyzed the applicability of projection method and contour detection method. The experimental results show that, compared with the contour detection method, the projection method is more suitable for the processing of characters and images in handwritten Chinese character recognition, which can realize the effective segmentation of required characters, simplify the setting of handwritten Chinese character recognition network and improve the recognition accuracy.
Key words : handwritten Chinese character recognition;the neural network;projection method;contour detection method

0 引言

    隨著科技的發展以及人們日常生活工作中對手寫漢字識別的需求與日俱增,精確識別手寫票據、手寫試卷以及檔案信息表等文件中的手寫漢字,將會為社會帶來極大的便利。然而,漢字類別繁多,字形結構復雜,一直是手寫字體識別中的難點和熱點[1],且個人手寫漢字字體特點也不盡相同[2]。從文獻[3]可以看出,隨著所需識別漢字的數量以及神經網絡復雜程度的提升,相應的計算時間也會呈指數形式提升[4-5]。由此可見,實現對手寫漢字圖像的有效分割,將會減少手寫漢字的識別量,相應地也降低了手寫漢字識別的復雜度與計算時間。

    為了達到精準分割、有效識別的目的,本文建立了卷積神經網絡(Convolutional Neural Networks,CNN)手寫漢字識別模型。對投影法輪廓檢測法的適用性進行了對比分析,通過實驗對投影法在手寫漢字識別中的適用性進行了驗證。




本文詳細內容請下載:http://www.jysgc.com/resource/share/2000003830




作者信息:

張  莉1,孟范澤1,劉思霖1,馮  銳1,王  鋼2,蔡  靖1

(1.吉林大學 儀器科學與電氣工程學院,吉林 長春130026;2.北華大學,吉林 吉林132013)




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 亚洲日韩精品欧美一区二区| 国产va在线观看免费| aaaaaav| 成全动漫视频在线观看免费播放 | 成人影院wwwwwwwwwww| 久久免费福利视频| 樱桃视频影院在线观看| 亚洲欧美日韩在线精品一区二区| 男插女高潮一区二区| 午夜理论影院第九电影院| 色屁屁在线观看视频免费| 国产在线精品一区二区在线看| 一个人看的毛片| 国产青青在线视频| 99精品欧美一区二区三区| 好湿好大硬得深一点动态图| 三级免费黄色片| 把英语课代表按在地上c网站| 久久久综合视频| 日韩1区2区3区| 久久精品国产99国产精品| 暖暖直播在线观看| 亚洲aⅴ无码专区在线观看q| 欧美成人免费全部| 亚洲日本视频在线观看| 欧美最猛黑人xxxx黑人猛交98| 亚洲精品线在线观看| 特级毛片爽www免费版| 免费a级毛片大学生免费观看| 精品一区二区三区波多野结衣 | 69久久夜色精品国产69小说| 国产香蕉尹人综合在线观看| 99re在线观看| 国产高清一级毛片| 91免费视频网| 国产高清国内精品福利| 97国产在线视频公开免费| 国内精品久久久久影院一蜜桃| 99日精品欧美国产| 在厨房被强行侵犯中文字幕| 99国内精品久久久久久久|