《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于ReliefF-DDC特征選擇算法的非侵入式負荷識別研究
基于ReliefF-DDC特征選擇算法的非侵入式負荷識別研究
2021年電子技術應用第7期
邵 琪1,包永強2,姜家輝1,張旭旭1
1.南京工程學院 電力工程學院,江蘇 南京211167;2.南京工程學院 信息與通信工程學院,江蘇 南京211167
摘要: 提取有效的負荷運行數據特征對于提高非侵入式負荷識別的精度具有重要作用。針對數據特征選擇欠佳導致負荷識別準確率不高的問題,提出了一種基于ReliefF-DDC特征選擇算法,用于降低特征維數減少復雜度,改善負荷識別效果。首先,利用ReliefF算法分析各特征與類別的關系計算特征權重,篩選無關特征;其次,利用DDC算法計算特征之間與類別的互信息分析相關性,根據特征子集評價度量刪除冗余特征;最后,采用孿生支持向量機(TWSVM)作分類器進行負荷識別。實驗表明,所提出的算法在提升分類效果的同時減少了運行時間。
中圖分類號: TN911;TM714
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200524
中文引用格式: 邵琪,包永強,姜家輝,等. 基于ReliefF-DDC特征選擇算法的非侵入式負荷識別研究[J].電子技術應用,2021,47(7):74-77,82.
英文引用格式: Shao Qi,Bao Yongqiang,Jiang Jiahui,et al. Research on non-intrusive load identification based on ReliefF-DDC feature selection algorithm[J]. Application of Electronic Technique,2021,47(7):74-77,82.
Research on non-intrusive load identification based on ReliefF-DDC feature selection algorithm
Shao Qi1,Bao Yongqiang2,Jiang Jiahui1,Zhang Xuxu1
1.School of Electrical Engineering,Nanjing Institute of Technology,Nanjing 211167,China; 2.School of Information and Communication Engineering,Nanjing Institute of Technology,Nanjing 211167,China
Abstract: Extracting effective characteristics of load operation data plays an important role in improving the accuracy of non-intrusive load identification.In this paper, a ReliefF-DDC feature selection algorithm was proposed to reduce feature dimension, reduce complexity and improve load recognition.Firstly, ReliefF algorithm was used to analyze the relationship between each feature and category, calculate feature weight, and screen irrelevant features.Secondly, DDC algorithm is used to calculate the mutual information analysis correlation between features and categories, and redundant features are removed according to feature subset evaluation measurement. Finally, twin support vector machine(TWSVM) is used as classifier for load recognition. Experiments show that the algorithm proposed in this paper improves the classification effect and reduces the running time.
Key words : ReliefF;DDC;TWSVM; feature selection; load identification

0 引言

    非侵入式負荷監測法(Non-Intrusive Load Monitoring,NILM)為實現智能電網和用戶之間的互動提供了數據支持,該方法在接戶線入口處安裝傳感器,采集總負荷的電壓、電流等電氣量數據進行分析,細化系統數據,從而辨識家用電器的類別及運行狀態[1]。相比于侵入式負荷監測法(Intrusive Load Monitoring,ILM),NILM具有成本低、用戶接受度高、后期維護方便等優勢,但是該方法對于負荷分解算法的要求較高。特征提取和負荷識別作為NILM中兩大關鍵技術[2],為NILM的發展提供了強有力的技術支持。特征選擇作為處理已提取特征的重要手段,是目前研究的熱點之一。




本文詳細內容請下載:http://www.jysgc.com/resource/share/2000003659




作者信息:

邵  琪1,包永強2,姜家輝1,張旭旭1

(1.南京工程學院 電力工程學院,江蘇 南京211167;2.南京工程學院 信息與通信工程學院,江蘇 南京211167)




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 国产大片在线观看| 天堂俺去俺来也WWW色官网| 亚洲va久久久噜噜噜久久天堂| 男人操女人的网站| 四影虎库1515mc海外| 非洲人zoxxxx另类| 国产真实乱对白精彩久久| 91福利国产在线观一区二区| 天天综合网天天综合色| 三上悠亚破解版| 日本xxxx高清在线观看免费| 久久精品视频热| 欧洲一区二区三区在线观看| 亚洲成在人线中文字幕| 激情欧美日韩一区二区| 免费观看中文字幕| 美女被免费视频网站a国产| 国产乱理伦片a级在线观看| 鲤鱼乡太大了坐不下去| 国产福利在线视频尤物tv| 91久久精品国产免费一区| 夜夜爽免费888视频| www.黄色在线| 少妇被又大又粗又爽毛片| 中文字幕人成无码免费视频| 日本xxx在线播放| 久久久久无码中| 日韩一卡2卡3卡4卡| 九九精品99久久久香蕉| 权明星商标查询| 亚洲中文无码a∨在线观看| 欧美日韩国产码高清综合人成| 亚洲毛片在线看| 欧美激情一区二区三区中文字幕| 亚洲电影在线免费观看| 波多野结衣办公室33分钟| 亚洲美女在线观看播放| 波多野结衣护士| 亚洲精品亚洲人成在线观看麻豆| 浮力影院亚洲国产第一页| 亚洲综合色婷婷在线观看|