《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于浮柵器件的低位寬卷積神經網絡研究
基于浮柵器件的低位寬卷積神經網絡研究
信息技術與網絡安全
陳雅倩,黃 魯
(中國科學技術大學 微電子學院,安徽 合肥230026)
摘要: 浮柵器件(Flash)能夠將存儲和計算的特性相結合,實現存算一體化,但是單個浮柵單元最多只能存儲位寬為4 bit的數據。面向Nor Flash,研究了卷積神經網絡參數的低位寬量化,對經典的AlexNet、VGGNet以及ResNet通過量化感知訓練。采用非對稱量化,將模型參數從32位浮點數量化至4位定點數,模型大小變為原來的1/8,針對Cifar10數據集,4位量化模型的準確率相對于全精度網絡僅下降不到2%。最后將量化完成的卷積神經網絡模型使用Nor Flash陣列加速。Hspice仿真結果表明,相對于全精度模型,部署在Nor Flash陣列中的量化模型精度僅下降2.25%,驗證了卷積神經網絡部署在Nor Flash上的可行性。
中圖分類號: TP183
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.06.007
引用格式: 陳雅倩,黃魯. 基于浮柵器件的低位寬卷積神經網絡研究[J].信息技術與網絡安全,2021,40(6):38-42.
Quantification research of convolutional neural network oriented Nor Flash
Chen Yaqian,Huang Lu
(School of Microelectronics,University of Science and Technology of China,Hefei 230026,China)
Abstract: Flash is one of the most promising candidates to bulid processing-in-memory(PIM)structures. However,the data width in one flash is 4bit at most. This article is oriented to Nor Flash and studies the quantitzation of convolution neural network. It performs quantitative perception training on the classic AlexNet, VGGNet and ResNet, and uses asymmetric quantization to quantify the model parameters from 32-bit floating point to 4-bit, and the model size becomes 1/8 of the original. For the Cifar10 data set, the accuracy of the 4-bit quantization model is only less than 2% lower than that of the full-precision network. Finally, the quantized convolutional neural network model is accelerated by the Nor Flash array. Hspice simulation results show that the accuracy of the quantized model bulided in the Nor Flash array is only reduced by 2.25% compared to the full-precision model. The feasibility of deploying the convolutional neural network on Nor Flash is verified.
Key words : convolution neural network;quantification;computation in memory;Nor Flash

0 引言

卷積神經網絡(Convolution Neural Network,CNN)在圖像識別等領域有著廣泛的應用,隨著網絡深度的不斷增加,CNN模型的參數也越來越多,例如Alexnet[1]網絡,結構為5層卷積層,3層全連接層,網絡參數超過5 000萬,全精度的模型需要250 MB的存儲空間,而功能更加強大的VGG[2]網絡和Res[3]網絡的深度以及參數量更是遠遠超過Alexnet。對于這些卷積神經網絡,每個運算周期都需要對數百萬個參數進行讀取和運算,大量參數的讀取既影響網絡的計算速度也帶來了功耗問題。基于馮諾依曼架構的硬件由于計算單元和存儲單元分離,在部署CNN模型時面臨存儲墻問題,數據頻繁搬運消耗的時間和能量遠遠大于計算單元計算消耗的時間和能量。

存算一體架構的硬件相對于馮諾依曼架構的硬件,將計算單元和存儲單元合并,大大減少了數據的傳輸,從而降低功耗和加快計算速度[4],因此將深度卷積神經網絡部署在基于存算一體架構的硬件上具有廣闊的前景。目前實現存算一體化的硬件主要包括相變存儲器[5](Phase Change Memory,PCM),阻變存儲器ReRAM[6]以及浮柵器件Flash,其中Flash由于制造工藝成熟,受到廣泛關注。



本文詳細內容請下載:http://www.jysgc.com/resource/share/2000003598




作者信息:

陳雅倩,黃  魯

(中國科學技術大學 微電子學院,安徽 合肥230026)


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 国产成人精品福利网站在线观看| 局长的又长又粗慧芳| 亚洲国产美女精品久久| 男女边吃奶边做爽动态爽| 国产91在线|日韩| 香蕉97碰碰视频免费| 国产福利一区二区三区在线观看| 97碰在线视频| 天堂在线观看视频| √天堂资源最新版中文种子| 我和室友香蕉第二部分| 久久免费观看国产精品| 日韩精品电影一区| 亚洲三级电影片| 欧美日韩精品一区二区三区在线 | 免费看a级毛片| 综合久久久久久久综合网| 国产一级毛片大陆| 青草国产精品久久久久久| 国产婷婷综合丁香亚洲欧洲| 天天影视综合网| 国产精品一区久久| 18成人片黄网站www| 国产经典三级在线| 91麻豆精品国产一级| 在线观看人成网站深夜免费| chinese国产xxxx实拍| 好爽…又高潮了毛片免费看| 一级黄色毛片播放| 成Av免费大片黄在线观看| 中文字幕julia中文字幕| 把女人的嗷嗷嗷叫视频软件| 丰满老熟妇好大bbbbb| 日本一区二区三区高清在线观看| 久久婷婷人人澡人人爱91 | 鲁丝丝国产一区二区| 国产成人影院在线观看| 成人a在线观看| 国产小视频免费| 韩国男女无遮挡高清性视频| 国产成人在线网站|