《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于NSST和NLMF的多聚焦圖像融合
基于NSST和NLMF的多聚焦圖像融合
信息技術與網絡安全
吳 劍1,吳曉紅1,何小海1,李林怡2,卿粼波1
(1.四川大學 電子信息學院 圖像信息研究所,四川 成都610065; 2.中國民航局第二研究所,四川 成都610041)
摘要: 為對融合圖像的信息豐富度、邊緣清晰度以及視覺效果作進一步的提升,設計了一種基于非下采樣剪切波變換(NSST)結合非局部均值濾波(NLMF)的多聚焦圖像融合算法。首先,將源圖像通過NSST變換進行多尺度、多方向分解得到高、低頻子帶系數。其次,對低頻子帶系數采用局部區域的改進拉普拉斯能量和以及非局部均值濾波融合方法構建低頻子帶系數融合權重;對高頻子帶系數采用基于相關系數的空間頻率與能量相結合的融合規則,再加以相位一致性規則,構建高頻子帶系數融合權重;最后,通過NSST反變換得到最終融合圖像。從三組不同聚焦圖像的實驗結果來看,所提算法不論是在主觀視覺上,還是在客觀評價上,融合圖像的輪廓、紋理等信息保留度以及視覺清晰度都有較好的提升。
中圖分類號: TP391.41
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.05.007
引用格式: 吳劍,吳曉紅,何小海,等. 基于NSST和NLMF的多聚焦圖像融合[J].信息技術與網絡安全,2021,40(5):39-44.
Multi-focus image fusion based on NSST and NLMF
Wu Jian1,Wu Xiaohong1,He Xiaohai1,Li Linyi2,Qing Linbo1
(1.Institute of Image Information,School of Electronics and Information Engineering, Sichuan University,Chengdu 610065,China; 2.The Second Research Institute of CAAC,Chengdu 610041,China)
Abstract: In order to further improve the information richness, edge clarity and visual effect of the fused image, a multi-focus image fusion algorithm based on non-downsampling shear wave transform(NSST) combined with non-local mean filtering(NLMF) was designed. Firstly, the source image was multi-scale and multi-directionally decomposed by NSST transform to obtain high and low frequency subband coefficients. Secondly, the improved Sum Modified Laplacian and the non-local mean filter fusion method were used for the low-frequency subband coefficients to construct the fusion weights of low-frequency subband coefficient; For the high-frequency subband coefficients, fusion rules based on the combination of spatial frequency and energy based on correlation coefficients were used, and then phase consistency rules were added to construct the fusion weights of high-frequency subband coefficient; Finally, the final fusion image was obtained by inverse NSST transformation. The experimental results from three sets of different focused images show that: Whether the algorithm in this paper is in subjective vision or objective evaluation, the information retention and visual clarity of the fusion image′s contour and texture have been improved.
Key words : multi-focus image fusion;non-local mean filtering;phase consistency;correlation coefficient

0 引言

圖像技術的不斷發展以及現代光學成像設備的聚焦范圍局限性,很難保證成像圖像都位于聚焦區域。多聚焦圖像融合技術將同一場景通過相同傳感器得到的不同聚焦信息有效地整合在一起,形成一幅內容豐富、信息飽和的聚焦圖像,可應用在遙感技術、醫學圖像和攝影等方面。

基于變換域的融合方法將源圖像通過各種變換以得到多尺度、多方向的多幅子帶圖像;然后,通過各種融合規則對子帶圖像進行融合;再通過反變換得到最終融合圖像。非下采樣輪廓波變換(Non-Subsampled Contourlet Transform,NSCT)[1]的提出主要解決了融合圖像的邊緣及輪廓表現得不是很明顯的問題。但是此變換忽視了空間一致性。通過NSCT[2-3]和脈沖耦合神經網絡(Pulse Coupled Neural Network,PCNN)的有效結合,不僅解決了空間一致性問題,同時也實現了更好的視覺效果。由于非下采樣剪切波變換(Non-Subsampled Shearlet Transform,NSST)[4]具有多方向、多尺度變換,平移不變等良好特性,也被用于圖像融合。稀疏表示(Sparse Representations,SR)[5]、低秩表示(Low-Rank Representation,LRR)[6]最近幾年也相繼出現在圖像融合領域,LRR在帶有噪聲的圖像融合中表現較為突出。基于卷積神經網絡(Convolutional Neural Networks,CNN)的圖像融合技術[7]等也被提出,并且達到了很好的視覺效果。

BUDADES A等提出的非局部均值濾波(Non-Local Mean Filter,NLMF)算法[8]不僅能達到去除噪聲的目的,還能在很大程度上保留圖像的結構信息。



本文詳細內容請下載:http://www.jysgc.com/resource/share/2000003549




作者信息:

吳  劍1,吳曉紅1,何小海1,李林怡2,卿粼波1

(1.四川大學 電子信息學院 圖像信息研究所,四川 成都610065;

2.中國民航局第二研究所,四川 成都610041)


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 黄色网址免费大全| jizz国产精品网站| 精品亚洲欧美无人区乱码| 国产高清在线观看麻豆| 久久精品aⅴ无码中文字字幕| 秦先生第15部大战宝在线观看| 国产福利在线观看视频| 丁香亚洲综合五月天婷婷| 欧洲美女与动zooz| 六月婷婷网视频在线观看| wwwxxx亚洲| 女人十八黄毛片| 久久国产精品亚洲综合| 欧美―第一页―浮力影院| 亚洲欧洲日产国码二区首页| 色欲香天天天综合网站| 国产精品香蕉在线观看不卡| bl道具play珠串震珠强迫| 日本精品啪啪一区二区三区| 亚洲精品乱码久久久久66| 美美女高清毛片视频免费观看| 国产精品大bbwbbwbbw| 一级毛片直接看| 日韩高清免费观看| 亚洲中文字幕久久无码| 玩弄丰满少妇XXXXX性多毛| 国产亚洲精品自在久久| 91福利视频一区| 成年女人免费视频播放77777| 亚洲人成网站在线观看播放青青| 男男全肉高h视频在线观看| 可知子与野鸟君日文| 久久福利资源网站免费看| 夜夜操免费视频| caoporn地址| 成人午夜福利电影天堂| 久久精品成人一区二区三区| 欧美日韩激情在线| 亚洲精品tv久久久久久久久久| 中文字幕网站在线观看| 樱桃视频高清免费观看在线播放|