《電子技術應用》
您所在的位置:首頁 > 測試測量 > 設計應用 > 基于改進的Faster R-CNN的古建筑地磚缺陷檢測
基于改進的Faster R-CNN的古建筑地磚缺陷檢測
2021年電子技術應用第1期
陳 利1,2,劉艷艷1,2
1.南開大學 光電子薄膜器件與技術天津市重點實驗室,天津300350; 2.南開大學 薄膜光電子技術教育部工程研究中心,天津300350
摘要: 缺陷檢測對于古建筑的保護和修繕具有重要的意義,傳統的地磚缺陷檢測通過目視檢查,存在受人力影響大、耗時長等限制?;谏疃葘W習的良好應用前景,建立故宮地磚缺陷的數據集,提出改進型Faster R-CNN的網絡。首先,構建可變形卷積,通過網絡學習并提取地磚中的缺陷特征;然后,將特征圖輸入區域生成網絡中生成候選區域框,將生成的特征圖和候選區域框進行池化操作;最后,輸出缺陷檢測結果。在故宮地磚圖片數據集的測試下,改進后的模型平均準確率均值到達92.49%,與Faster R-CNN模型相比提高了2.99%,更適用于地磚缺陷檢測。
中圖分類號: TN03;TP181
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.200555
中文引用格式: 陳利,劉艷艷. 基于改進的Faster R-CNN的古建筑地磚缺陷檢測[J].電子技術應用,2021,47(1):31-35.
英文引用格式: Chen Li,Liu Yanyan. Defects detection of floor tiles of ancient buildings based on Faster R-CNN[J]. Application of Electronic Technique,2021,47(1):31-35.
Defects detection of floor tiles of ancient buildings based on Faster R-CNN
Chen Li1,2,Liu Yanyan1,2
1.Key Laboratory for Photoelectronic Thin Film Devices and Technology of Tianjin,Nankai University,Tianjin 300350,China; 2.Engineering Research Center of Thin Film Optoelectronics Technology,Ministry of Education,Nankai University, Tianjin 300350,China
Abstract: Defect detection is of great significance for the protection and repair of ancient buildings. The traditional floor tile defect detection has been subject to visual inspection, which has limitations due to human influence and time-consuming. Based on the good application prospects of deep learning, this paper builds a data set of imperfections in the Forbidden City, and proposes an improved Faster R-CNN. Firstly, the deformable convolution was constructed, and the defect features in the floor tile were learned and extracted through the network. Then,the feature graph was input into region proposal network to generate the candidate region box, and the generated feature graph and candidate region box was pooled. Finally, the defect detection results were output. Under the test of the image data set of floor tiles of the Forbidden City, the mean accuracy of the improved model reached 92.49%, which was 2.99% higher than the Faster R-CNN model and more suitable for the floor tile defect detection.
Key words : defect detection;Faster R-CNN;deformable convolution

0 引言

    隨著科技高速發展,對文物的保護和修繕越來越得到重視。傳統對文物的缺陷檢測主要依靠人力進行目視檢查,但容易受到天氣、時間等原因影響。地磚缺陷具有形狀不規則、背景噪聲系數大等特征,目前大多數缺陷檢測算法都是根據應用場景不同進行手工提取缺陷特征,直接或者通過機器學習算法進行分類[1]。這種有監督機器學習存在一定局限性,受圖片中缺陷類別數目、特征形狀等因素影響,人為提取特征需要具有很強的專業性,檢測結果不好,魯棒性差,所以不能很好地適用于對地磚缺陷檢測。

    隨著計算機視覺不斷發展,深度學習作為計算機視覺的分支,越來越受到人們重視,目標檢測是深度學習的廣泛應用之一。近些年來,目標檢測取得了很大突破。目標檢測主要分為兩類:一類是基于候選框的R-CNN(Region Convolutional Neural Network)系列算法,如R-CNN、Fast R-CNN(Fast Region Convolutional Neural Network)、Faster R-CNN(Faster Region Convolutional Neural Network)[2],它們是生成候選框后進行分類和位置回歸;另一類是YOLO(You Only Look Once)[3]、SSD(Single Shot MultiBox Detector),從回歸角度出發,直接在圖像中回歸出目標邊框和位置,這類算法僅使用一個卷積神經網絡。第一類方法準確度高,速度慢;第二類算法速度快,可以到達實時檢測,但是準確性低。

    目前基于深度學習的目標檢測算法很多,應用在目標檢測的效果也很突出[4-6],但是現有算法在缺陷檢測中并不能很好地體現出來[7-9],尤其是在地磚缺陷檢測中,現有目標檢測算法受限于地磚特征的多樣性以及紋理特性。為此,本文提出了一種基于改進型Faster R-CNN網絡用于檢測地磚缺陷。對卷積核中每個采樣點位置都增加了一個偏移變量,通過這些變量,卷積核就可以在當前位置附近隨意采樣,而不再局限于之前的規則格點,形狀多變的感受野豐富了語義信息,從而提高檢測精度[3]




本文詳細內容請下載:http://www.jysgc.com/resource/share/2000003301




作者信息:

陳  利1,2,劉艷艷1,2

(1.南開大學 光電子薄膜器件與技術天津市重點實驗室,天津300350;

2.南開大學 薄膜光電子技術教育部工程研究中心,天津300350)

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 成人黄18免费视频| 欧美日韩亚洲电影网在线观看| 国产伦理一区二区三区| 最新黄色免费网站| 大陆一级毛片免费视频观看i| 两个人看的www高清免费视频| 日本阿v视频在线观看高清 | 亚洲激情视频图片| 国产自无码视频在线观看| japanese日本护士xxxx10一16| 成年人网站在线免费观看| 久久久久国产一区二区三区| 日韩精品视频免费观看| 亚洲中文无码a∨在线观看| 欧美日韩国产色综合一二三四| 亚洲精品国产高清不卡在线| 真实乱l仑全部视频| 十九岁日本电影免费完整版观看| 舞蹈班的三个小女孩唐嫣| 国产乱子伦精品无码码专区| 黄色片视频国产| 国产欧美高清在线观看| **性色生活片毛片| 国产精品美女久久久m| 8050午夜网| 国产自国产自愉自愉免费24区| 99久久综合狠狠综合久久aⅴ | 亚洲国产视频一区| 欧美激情xxxx| 亚洲欧美日韩国产精品一区二区| 狠狠色丁香久久婷婷综合五月| 免费动漫人物扑克软件网站 | 激情五月激情综合网| 俄罗斯激情女同互慰在线| 第272章推倒孕妇秦| 免费看男女下面日出水视频| 精品久久久久久久久中文字幕| 午夜影院在线视频| 精品在线视频免费| 办公室震动揉弄求求你| 精品乱码久久久久久久|