《電子技術應用》
您所在的位置:首頁 > 電源技術 > 設計應用 > 基于DFFT-WT-BP的光伏系統諧波檢測
基于DFFT-WT-BP的光伏系統諧波檢測
2019年電子技術應用第10期
孫 成1,黃 鈺2,朱劍平1,張保健1,張志遠1,王雅靜2
1.上海金智晟東電力科技有限公司,江蘇 南京210000;2.山東理工大學,山東 淄博255000
摘要: 現有的FFT-WT(Fast Fourier Transform-Wavelet Transform)算法與FFT-BP(Fast Fourier Transform-Back Propagation)算法都只是針對光伏系統中某些特定諧波的檢測時有優勢。對FFT-WT算法作了改進,提出一種DFFT-WT算法;對FFT-BP算法作了改進,提出了改進的FFT-BP模型。并在此基礎上將兩者結合,引入閾值區間來限制神經網絡迭代的搜索范圍,提出了一種基于DFFT-WT-BP(Double FFT-WT-BP)的檢測算法。仿真實驗表明,該算法能夠檢測實際光伏并網逆變系統中多種諧波共同構成的復雜諧波信號,并且精度更高,實用性更強。
中圖分類號: TP216
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.190014
中文引用格式: 孫成,黃鈺,朱劍平,等. 基于DFFT-WT-BP的光伏系統諧波檢測[J].電子技術應用,2019,45(10):71-75.
英文引用格式: Sun Cheng,Huang Yu,Zhu Jianping,et al. Harmonic detection of PV power generation system based on DFFT-WT-BP[J]. Application of Electronic Technique,2019,45(10):71-75.
Harmonic detection of PV power generation system based on DFFT-WT-BP
Sun Cheng1,Huang Yu2,Zhu Jianping1,Zhang Baojian1,Zhang Zhiyuan1,Wang Yajing2
1.Shanghai Sunest Electricity Technology Co.,Ltd.,Nanjing 210000,China; 2.Shandong University of Technology,Zibo 255000,China
Abstract: The existing FFT-WT algorithm and FFT-BP algorithm have advantages only for the detection of certain specific harmonics in photovoltaic systems. In this paper, the FFT-WT algorithm is improved, and a DFFT-WT algorithm is proposed. The FFT-BP algorithm is improved and an improved FFT-BP model is proposed. On the basis of this, the two are combined, the threshold interval is introduced to limit the search scope of the neural network iteration, and a DFFT-WT-BP(Double FFT-WT-BP) detection algorithm is proposed. The simulation results show that the algorithm can detect complex harmonic signals composed of multiple harmonics in the actual photovoltaic network inversion system, and is more accurate and practical.
Key words : photovoltaics;harmonic;interharmonic;fast Fourier transform-wavelet transform;fast Fourier transform-back propagation

0 引言

    隨著現代光伏系統的發展,越來越多的光伏逆變器接入電網,隨之產生的大量的諧波對于系統電能質量的污染十分嚴重[1]。FFT是傳統的諧波檢測算法,被廣泛應用于光伏發電站的諧波檢測[2]。但在工程應用中,采樣非同步時,FFT存在較為明顯的頻譜泄露與柵欄效應[3],檢測精度較低,難以準確識別間諧波與非穩態諧波[4]。為此許多學者們提出了各類改進FFT算法,如FFT與WT聯合算法[5-7]、FFT與BP聯合算法[8-10]等。但是,這些改進算法都只是針對某些諧波的檢測有優勢,難以處理實際的復雜諧波信號。本文提出了一種基于DFFT-WT-BP的諧波檢測方法,該方法結合了FFT、WT和BP網絡的優點,可以分析實際光伏并網逆變系統的復雜諧波信號,精度更高,實用性更強。

1 FFT算法

    傅里葉變換的實質就是對信號進行加窗截斷,從時域變換到頻域進行分析[11]??紤]到漢寧窗頻具有譜泄露較小的優點,因此截斷窗函數選擇漢寧窗。漢寧窗雙譜線插值算法的頻率、幅度的修正公式為[12]

ck2-gs1.gif

2 基于FFT的改進算法

2.1 基于FFT-WT的改進算法

    分布式光伏并網逆變系統實際運行時會產生大量的突變信號或高頻諧振,以及各種類型的噪聲干擾。這些信號FFT難以處理,而WT適用于分析非穩態信號,彌補了前者的不足[13]。所以,學者們提出了一種將FFT與WT結合之后得到的能夠綜合兩者優勢的新算法(FFT-WT算法),具體流程如圖1所示。主要思路為:利用WT將信號分解至不同的頻帶,利用FFT分析低頻信號,利用小波分析高頻信號。

ck2-t1.gif

    然而,該算法是在已知諧波成分的基礎上制定的,但在工程實際中面對的諧波信號是未知的,因此無法確定小波的分解層數以及所需要關注的頻帶。本文在前者的基礎上,增加了FTT預分析的方法,提出了雙重FFT與WT相結合(Wavelet-Double FFT,DFFT-WT)的改進方案:利用FFT獲取諧波的粗略分布,以此推算出小波的分解層數和后續關注的頻帶,再使用WT將信號分離。對所關注的高頻頻帶使用小波閾值消噪后分析與重構,獲得高頻分量的參數信息;對關注的低頻頻帶使用加窗插值FFT分析,獲得低頻分量的參數信息。算法的主要流程如圖2所示。

ck2-t2.gif

    對比圖1與圖2所示流程圖,可以看到,本節提出的DFFT-WT算法采取了預分析的方式,確定了分解層數與關注頻帶,理論上可以大大減少運算量,具有更高的精度與實用性。

2.2 基于FFT-BP的改進算法

    FFT對于諧波的檢測精度不高,而BP神經網絡擁有強大的非線性映射能力和自學習能力,能夠彌補前者的不足。對此,一些學者將FFT與BP神經網絡相結合(以下簡稱FFT-BP算法),提升了對于諧波檢測的精度,具體流程如圖3所示。

ck2-t3.gif

    本節將學習率、動量因子和激勵函數一同參與網絡的調節,構建的BP神經網絡結構圖如圖4所示,其訓練步驟如下:

ck2-t4.gif

    BP網絡的輸入設為ti(i=1,2,…,N),網絡的激勵函數c(t)表示為:

ck2-gs2-5.gif

    在仿真研究時發現,因為BP網絡尋求的是全局的最優解,所以在多種諧波共同構成的復雜諧波信號中,BP網絡為了達到整體誤差的最小,會在迭代時自動“犧牲”小信號分量的精度。所以說,改進后的FFT-BP算法對于復雜信號中的間諧波弱分量的檢測能力仍然是不夠的。

3 基于DFFT-WT-BP的聯合檢測方案

    DFFT-WT算法能夠同時處理穩態與非穩態諧波,但精度仍然有提升的空間,改進后的FFT-BP算法對于間諧波小信號的檢測能力不足,且無法檢測非穩態諧波。在研究了FFT算法、WT算法和BP神經網絡的基礎上,聯系前面提出的兩種改進算法,本文提出了基于DFFT-WT-BP的復雜信號檢測算法,具體流程如圖5所示,主要步驟如下:

ck2-t5.gif

    (1)FFT算法預分析,得到小波的分解層數以及需要關注的頻帶。

    (2)根據上一步計算獲得的分解層數,選取合適的離散小波將復雜信號粗略分離,得到關注頻帶信息。

    (3)對上一步分解之后得到的關注高頻分量進行閾值去噪后分析,必要時重構,得到高頻諧波的起止時刻以及振幅;得到關注的低頻分量,利用加窗插值FFT得到全部的穩態諧波個數及粗精度的頻率、幅度和相位。

    (4)將上一步得到的諧波總個數設定為BP網絡中神經元的個數,將得到的粗精度諧波頻率設定為BP神經網絡中諧波頻率的初始值。前文提到,BP網絡在運算復雜信號時,對于間諧波弱信號的檢測能力不足,但是本方案的前三步已經讓BP網絡獲得了較好的初值,因此在其基礎上,增加BP網絡迭代時±1%頻率閾值區間、±5%幅度閾值區間和±10%相位閾值區間,進行優化運算,最終得到穩態分量高精度的頻率、幅度與相位。

    與傳統的檢測算法以及各類改進檢測算法相比,DFFT-WT-BP算法主要作出了以下5點改進:

    (1)利用FFT預分析未知信號,可以快速得出分解層數和關注諧波所處的頻帶,只需要對特定的頻帶作處理,節省了工作量。

    (2)由于已經通過預分析的方法確定了關注頻帶,因此只需要對信號作粗略的分解,規避了分解層數過多時檢測速度與精度受到影響的問題。

    (3)將已經處理過的粗精度諧波參數送入BP網絡進一步優化,減少了迭代時間,提升了檢測精度,增加了對間諧波的識別能力。

    (4)將BP網絡的學習率與動量因子一起參與神經網絡的調整,減少了運算時間,提升了檢測精度,實現了對間諧波的檢測。

    (5)增加了頻率、幅度和相位的迭代區間,限制了運算時的搜索區域,規避了間諧波迭代時為了“迎合”全局的誤差最小值而發生偏移。

4 仿真分析

4.1 與FFT-BP算法的對比

    由2.2節分析可知,FFT-BP算法不好處理復雜信號中的間諧波,為了體現DFFT-WT-BP算法的優勢,在信號模型中僅加入整數次穩態諧波分量,獲得FFT-BP算法與DFFT-WT-BP算法對于整數次諧波的檢測結果。設諧波采樣信號為:

     ck2-gs6.gif

    由FFT預處理后,設定神經元個數為5個,取基波頻率為50 Hz,設定BP網絡初始的頻率學習率為0.02,幅度與相位的學習率為0.1,動量因子設定為0.6,并按2.2節所述的規則進行調整。獲得的幅度和相位的對比見表1、表2,誤差曲線的對比如圖6、圖7所示。可以看出,FFT-BP算法與DFFT-WT-BP算法在該類信號條件下,幅值與相位的檢測誤差均在10-5~10-4,精度并沒有明顯差異,但FFT-BP算法的運算次數為1 871次,DFFT-WT-BP算法的運算次數為672次,運算時間有很大的差距??梢缘贸?,DFFT-WT-BP算法與FFT-BP算法相比,迭代次數更少,效率更高。

ck2-b1.gif

ck2-b2.gif

ck2-t6.gif

ck2-t7.gif

4.2 與FFT-WT算法的對比

    本文構建了如式(7)所示的復雜信號,其包括50 Hz的基頻信號以及頻次比為1.6:3:3.1:5:5.2:7:8.2:11的穩態信號,其幅度比為100:8:50:10:50:5:50:30:15:30;含有一個最大幅度為80 V的高頻衰減信號;包含一個正態分布的隨機噪聲。對該模型采取FFT-WT算法以及DFFT-WT-BP算法分別仿真分析。

     ck2-gs7.gif

    根據圖6所示流程圖,得到高頻衰減信號如圖8所示,其最大幅度為80 V,起始位置為0.2 s,與預定結果一致,滿足檢測要求。得到全部的穩態諧波與間諧波粗精度的頻率、幅度與相位信息如圖9所示,經過BP網絡計算后獲得的優化結果與FFT-WT算法的結果分析結果比對見表3~表5。

ck2-t8.gif

ck2-t9.gif

ck2-b3.gif

ck2-b4.gif

ck2-b5.gif

    由表3~表5的數據對比得到:

    (1)FFT-WT算法檢測頻率的誤差分布在10-4~10-3,DFFT-WT-BP算法檢測頻率的誤差分布在10-6~10-5。

    (2)FFT-WT算法檢測幅度的誤差分布在10-4~10-2,DFFT-WT-BP算法檢測幅度的誤差分布在10-5~10-4

    (3)FFT-WT算法檢測相位的誤差分布在10-4~10-2,DFFT-WT-BP算法檢測相位的誤差分布在10-5~10-4。

    能夠推出,在處理電網實際的復雜信號時,DFFT-WT-BP算法不但準確檢測出了非穩態分量的主要參數,而且用設定閾值區間的方法規避了FFT-BP算法的固有缺陷,擁有了對間諧波弱信號的檢測能力,對于穩態分量整體的檢測精度比FFT-WT算法高出了1~2個數量級。

5 結論

    針對光伏系統的諧波信號,本文在對現有的FFT-WT算法和FFT-BP算法改進的基礎上,提出了聯合的DFFT-WT-BP算法。經仿真驗證,本文提出的DFFT-WT-BP算法對于光伏系統中由穩態的諧波與間諧波分量、非穩態分量和各種噪聲疊加而成的復雜信號有著很好的檢測效果。理論與仿真結果表明,DFFT-WT-BP算法精度高,實時性好,適應能力強,能夠滿足實際的檢測需求。

參考文獻

[1] 薛萍,朱琳琳,王宏民.基于準同步采樣光伏發電系統諧波分析方法[J].電子技術應用,2015,41(11):121-123.

[2] LIU D,YANG Z,HE Y,et al.Harmonic analysis of power system based on Rife-Vincent self-convolution window triple-spectral-line interpolation FFT[J].Journal of Electronic Measurement & Instrumentation,2016,30(9):1351-1356.

[3] 李平,李源,孔銀昌.一種加Nuttall窗三譜線插值FFT諧波檢測算法[J].電子技術應用,2017,43(5):41-43.

[4] 翟曉軍,周波.一種改進的插值FFT諧波分析算法[J].中國電機工程學報,2016,36(11):2952-2958.

[5] 朱翔,解大,高強,等.基于FFT和db20小波變換的電力系統諧波聯合分析策略[J].電力系統保護與控制,2012,40(12):62-65.

[6] 房國志,楊超,趙洪.基于FFT和小波包變換的電力系統諧波檢測方法[J].電力系統保護與控制,2012,40(5):75-79.

[7] EBRAHIM M A,ELYAN T,WADIE F,et al.Optimal design of RC snubber circuit for mitigating transient overvoltage on VCB via hybrid FFT/Wavelet Genetic approach[J].Electric Power Systems Researc,2017,143:451-461.

[8] 王凱亮,曾江,王克英.一種基于BP神經網絡的諧波檢測方案[J].電力系統保護與控制,2013(17):44-48.

[9] 曹英麗,尹希哲.基于BP神經網絡和全相位快速傅里葉變換的電力系統諧波檢測技術研究[J].現代電子技術,2017, 40(1):133-136,141.

[10] 邢曉敏,商國敬,徐新.基于線性神經網絡的諧波檢測方法研究[J].電測與儀表,2014,51(22): 40-43.

[11] OUYANG M X. Applications of addbBlackman window function in FFT[J].Southern Metals,2012(5):51-53,60.

[12] KANG W,LI N,ZHANG J,et al.An improved harmonic analysis algorithm of multi-spectrum-line interpolation FFT[J].Electrical Measurement & Instrumentation,2016,53(10):8-15.

[13] 孫曙光,龐毅,王景芹,等.一種基于新型小波閾值去噪預處理的eemd諧波檢測方法[J].電力系統保護與控制,2016:44(2):42-48.



作者信息:

孫  成1,黃  鈺2,朱劍平1,張保健1,張志遠1,王雅靜2

(1.上海金智晟東電力科技有限公司,江蘇 南京210000;2.山東理工大學,山東 淄博255000)

此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
久久国产主播| 亚洲一二区在线| 日韩网站在线观看| 影音先锋另类| 狠狠色丁香婷婷综合| 国产情侣一区| 国产精品手机视频| 国产精品久久久久久久久久久久| 欧美精品免费观看二区| 欧美黄色精品| 欧美精品电影| 欧美人与禽性xxxxx杂性| 欧美精品日韩一本| 欧美久久九九| 欧美色网在线| 国产精品美女久久久久久免费 | 国产精品久久久久9999吃药| 欧美日韩国产一区| 欧美偷拍一区二区| 国产精品激情电影| 国产精品扒开腿做爽爽爽视频 | 国产精品久久久久毛片软件 | 亚洲毛片视频| 在线亚洲自拍| 亚洲伊人一本大道中文字幕| 午夜欧美理论片| 久久精品国产欧美激情| 亚洲国产日韩欧美在线图片 | 欧美在线啊v一区| 久久九九精品| 免费日本视频一区| 欧美理论电影网| 国产精品福利在线观看网址| 国产精品免费视频xxxx| 国产亚洲一区二区在线观看| 加勒比av一区二区| 亚洲精品乱码久久久久久久久 | 在线看日韩欧美| 亚洲三级影院| 亚洲一二三四区| 欧美一级成年大片在线观看| 亚洲国产高清一区| 99精品欧美一区二区三区| 亚洲欧美久久| 老司机成人网| 欧美日韩亚洲另类| 国产日韩精品在线观看| 亚洲国产另类精品专区| 一区二区三区国产在线观看| 性做久久久久久| 亚洲另类在线视频| 午夜精品区一区二区三| 麻豆成人91精品二区三区| 欧美日韩不卡在线| 国产欧美日韩一级| 亚洲高清久久| 亚洲性感美女99在线| 亚洲电影网站| 亚洲在线一区| 久热精品视频在线观看| 欧美日韩视频在线一区二区| 国产午夜精品久久| 日韩视频精品| 久久狠狠一本精品综合网| 一区二区欧美视频| 久久久精品久久久久| 欧美日韩另类一区| 黄色工厂这里只有精品| 亚洲最新在线视频| 久久精品91| 午夜精品影院| 欧美激情国产精品| 国产午夜精品久久久久久久| 亚洲精品乱码久久久久久蜜桃91 | 欧美一区二粉嫩精品国产一线天| 美女露胸一区二区三区| 国产精品久久久一本精品| 尤物九九久久国产精品的特点| 亚洲少妇最新在线视频| 亚洲国产一区在线| 久久gogo国模啪啪人体图| 欧美人成在线视频| 国内精品久久久久久久影视麻豆| aa级大片欧美三级| 91久久精品久久国产性色也91| 性欧美在线看片a免费观看| 欧美激情一区二区三区成人| 国内自拍视频一区二区三区| 亚洲图片在区色| 一区二区三区免费网站| 免费亚洲网站| 黄色在线成人| 欧美亚洲日本国产| 午夜一区二区三区在线观看| 欧美日韩福利在线观看| 在线播放不卡| 欧美专区亚洲专区| 久久国产精品99精品国产| 欧美午夜国产| 亚洲精选大片| 国产精品久久综合| 国产欧美一区二区精品婷婷| 亚洲国产精品悠悠久久琪琪| 欧美在线视频免费| 欧美一级成年大片在线观看| 欧美午夜精品久久久| 亚洲精选久久| 亚洲美洲欧洲综合国产一区| 免费人成精品欧美精品| 激情另类综合| 亚洲二区在线观看| 久久综合久久久| 国内精品一区二区三区| 欧美影院久久久| 久久精品国产77777蜜臀 | 国产欧美精品国产国产专区| 亚洲少妇一区| 亚洲免费网址| 国产精品久久久亚洲一区| 亚洲图片在线| 性一交一乱一区二区洋洋av| 国产精品高潮视频| 亚洲少妇在线| 欧美一级视频精品观看| 国产欧美午夜| 欧美自拍偷拍| 在线观看日韩av电影| 欧美一级大片在线免费观看| 欧美一区二区啪啪| 国产欧美日韩综合精品二区| 亚洲欧美日韩高清| 午夜精品一区二区三区在线| 国产精品丝袜久久久久久app| 亚洲一区在线观看视频| 性欧美video另类hd性玩具| 国产精品羞羞答答xxdd| 香港久久久电影| 久久精品99国产精品酒店日本| 国产一区二区成人久久免费影院| 欧美一区二区三区啪啪| 久久综合福利| 亚洲黑丝在线| 亚洲一区二区三区精品在线| 国产精品日本一区二区| 亚洲综合电影| 久久亚洲午夜电影| 亚洲精品久久久久久久久久久久久 | 亚洲日本电影| 久久精品中文| 精品91免费| 99视频精品| 国产精品扒开腿做爽爽爽软件| 亚洲一区欧美激情| 久久久99国产精品免费| 136国产福利精品导航| 一区二区激情小说| 国产伦精品一区二区三区在线观看| 久久av红桃一区二区小说| 欧美成人免费小视频| 夜色激情一区二区| 欧美在线一区二区三区| 亚洲国产精品www| 亚洲女人小视频在线观看| 国产亚洲一区二区三区在线播放| 亚洲人成网站影音先锋播放| 欧美网站在线观看| 欧美专区在线观看| 欧美日韩国产色视频| 午夜免费在线观看精品视频| 欧美韩国日本综合| 亚洲一区二区少妇| 欧美成人一区二区在线| 亚洲一级二级在线| 麻豆av一区二区三区| 一区二区三区四区五区在线| 久久精品日韩| 日韩亚洲精品视频| 久久永久免费| 中文在线资源观看视频网站免费不卡| 久久久久成人精品| 99成人精品| 乱码第一页成人| 亚洲一区在线直播| 欧美风情在线观看| 亚洲午夜精品久久久久久浪潮| 另类春色校园亚洲| 亚洲一区二区三区色| 每日更新成人在线视频| 亚洲淫性视频| 欧美精品一区二区在线观看 | 欧美一区二粉嫩精品国产一线天| 欧美金8天国| 欧美一区二区在线播放| 欧美日韩中文字幕在线| 久久精品色图| 国产精品一二三视频| 亚洲色图在线视频| 激情婷婷亚洲| 欧美一区日韩一区| 亚洲天堂男人|