《電子技術應用》
您所在的位置:首頁 > 嵌入式技術 > 業界動態 > 深度學習的未來在單片機身上?

深度學習的未來在單片機身上?

2018-06-13
關鍵詞: 谷歌T 單片機 CPU

Pete Warden,是谷歌TensorFlow團隊成員,也是TensorFLow Mobile的負責人,常年遨游在深度學習的大海。

微信圖片_20180613220424.jpg

另外,這些看上去很熟悉的書,也是他的作品。

除此之外,皮特有個新的想法要和大家分享——

他堅定地相信,未來的深度學習能夠在微型的、低功耗的芯片上自由地奔跑。

換句話說,單片機 (MCU) ,有一天會成為深度學習最肥沃的土壤。

這里面的邏輯走得有些繞,但好像還是有點道理的。

為什么是單片機

單片機遍地都是

根據皮特的估計,今年一年全球會有大約400億枚單片機 (MCU) 售出。

微信圖片_20180613220506.jpg

MCU里面有個小CPU,RAM只有幾kb的那種,但醫療設備、汽車設備、工業設備,還有消費級電子產品里,都用得到。

這樣的計算機,需要的電量很小,價格也很便宜,大概不到50美分。

之所以得不到重視,是因為一般情況下,MCU都是用來取代 (如洗衣機里、遙控器里的) 那些老式的機電系統——控制機器用的邏輯沒有發生什么變化。

能耗才是限制因素

任何需要主電源 (Mains Electricity) 的設備,都有很大的局限性。畢竟,不管到哪都要找地方插電,就算是手機和PC都得經常充電才行。

微信圖片_20180613220538.gif

然而,對智能產品來說,在任何地方都能用、又不用經常維護,才是王道。

所以,先來看下智能手機的各個部位用電有多快——

· 顯示器400毫瓦
· 無線電800毫瓦
· 藍牙100毫瓦
· 加速度計21毫瓦
· 陀螺儀130毫瓦
· GPS 176毫瓦

相比之下,MCU只需要1毫瓦,或者比這更少。可是,一枚紐扣電池擁有2,000焦耳的電量,所以即便是1毫瓦的設備,也只能維持1個月。

當然,現在的設備大多用占空比 (Duty Cycling) ,來避免每個部件一直處在工作狀態。不過,即便是這樣,電量分配還是很緊張。

CPU和傳感器不太耗電

CPU和傳感器的功耗,基本可以降到微瓦級,比如高通的Glance視覺芯片。

相比之下,顯示器和無線電,就尤其耗電了。即便是WiFi和藍牙也至少要幾十毫瓦。

微信圖片_20180613220616.jpg

因為,數據傳輸需要的能量,似乎與傳輸距離成正比。CPU和傳感器只傳幾毫米,而無線電的傳送距離以米為單位,就要貴得多。

傳感器的數據都去哪了

傳感器能獲取的數據,比人們能用到的數據,多得多。

皮特曾經和從事微型衛星拍攝的攻城獅聊過。

他們基本上用手機相機來拍高清視頻。但問題是,衛星的數據存儲量很小,傳輸帶寬也很有限,從地球上每小時只能下載到一點點數據。

就算不涉及到地外事務,地球上的很多傳感器也會遇到這樣的尷尬。

微信圖片_20180613220638.jpg

一個很有趣的栗子,來自皮特的一個好基友,每到12月,他家上網流量就會用到爆炸。后來,他發現是那些給圣誕節掛的彩燈,影響了視頻下載的壓縮比例,多下載了很多幀。

跟深度學習有什么關系

如果上面這些聽上去有點道理,那么就有一大片市場等待技術來挖掘。

我們需要的是,能夠在單片機上運轉的,不需要很多電量的,依賴計算不依賴無線電,并且可以把那些本來要浪費掉的傳感器數據利用起來的,設備。

這也是機器學習,特別是深度學習,需要跨越的鴻溝。

天作之合

深度學習就是上面所說的,計算密集型,可以在現有的MCU上運行得很舒服。

這很重要,因為很多其他的應用,都受到了“能在多短的時間里獲得大量的儲存空間”這樣的限制。

微信圖片_20180613220700.jpg

相比之下,神經網絡大部分的時間,都是用來把那些很大很大的矩陣乘到一起,翻來覆去用相同的數字,只是組合方式不同了。

這樣的運算,當然比從DRAM里讀取大量的數值,要低碳得多。

需要的數據沒那么多的話,就可以用SRAM這樣低功耗的設備來存儲。

如此說來,深度學習最適合MCU了,尤其是在8位元計算可以代替浮點運算的時候。

深度學習很低碳

皮特花了很多時間,來考慮每次運算需要多少皮焦耳。

比如,MobileNetV2的圖像分類網絡,的最簡單的結構,大約要用2,200萬次運算。

如果,每次運算要5皮焦,每秒鐘一幀的話,這個網絡的功率就是110微瓦,用紐扣電池也能堅持近一年。

對傳感器也友好

最近幾年,人們用神經網絡來處理噪音信號,比如圖像、音頻、加速度計的數據等等。

微信圖片_20180613220722.jpg

如果可以在MCU上運行神經網絡,那么更大量的傳感器數據就可以得到處理,而不是浪費。

那時,不管是語音交互,還是圖像識別功能,都會變得更加輕便。

雖然,這還只是個理想。

最后一句

果然,TensorFlow Mobile的老大,滿腦子還是便攜設備的事。

原文傳送門:

https://petewarden.com/2018/06/11/why-the-future-of-machine-learning-is-tiny/


本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。
主站蜘蛛池模板: 久久国产免费观看精品3| 伊人色综合久久天天| 香蕉视频成人在线观看| 奇米四色在线视频| 中文无码人妻有码人妻中文字幕| 曰批免费视频播放在线看片二| 亚洲精品国产精品国自产观看| 精品人妻一区二区三区四区 | 污污动漫在线观看| 午夜国产精品久久久久| 蜜桃麻豆www久久囤产精品| 国产激情久久久久影院| 91免费视频网| 在线观看国产人视频免费中国 | 色综合色综合色综合色综合网| 国产视频第一页| 99精品国产一区二区三区2021| 少妇高潮喷水久久久久久久久久| 丰满岳乱妇在线观看视频国产| 日韩不卡视频在线| 久草福利资源网站免费| 极品美女一级毛片免费| 亚洲偷自精品三十六区| 欧美成人黄色片| 亚洲欧美精品一区天堂久久| 狂野欧美激情性xxxx| 免费观看成人毛片| 美女毛片一区二区三区四区| 国产l精品国产亚洲区在线观看| 野外做受又硬又粗又大视频| 国产在播放一区| 亚洲精品视频在线观看你懂的| 国产精品成人久久久久久久| 91福利在线视频| 国语自产精品视频在线区| a一级日本特黄aaa大片| 天天综合网网欲色| www.中文字幕在线| 夫妇交换性3中文字幕| jizzjizz18日本人| 女人张开腿日出白浆视频|