《電子技術應用》
您所在的位置:首頁 > 嵌入式技術 > 設計應用 > 光伏組件內部參數辨識與輸出特性研究
光伏組件內部參數辨識與輸出特性研究
2018年電子技術應用第1期
楊宏超,程若發,呂彩艷,王雪微
南昌航空大學 信息工程學院,江西 南昌330063
摘要: 基于光伏組件的物理模型快速準確地識別其內部參數對于預測光伏陣列的輸出特性、跟蹤最大功率點和電池故障模型的特性是非常重要的。而傳統數學解析的參數辨識方法存在著辨識參數不準確,一般的智能優化算法精度都優于數學解析法,但現有的粒子群參數辨識方法存在著易陷入早熟和迭代次數過多等問題。對此,提出了一種改進量子粒子群算法,對光伏組件內部5參數進行準確辨識,并對其外部輸出特性進行預測。通過MATLAB仿真算例和實際測試數據對該方法進行驗證,證明其準確性和適用性。
中圖分類號: TP391
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.171551
中文引用格式: 楊宏超,程若發,呂彩艷,等. 光伏組件內部參數辨識與輸出特性研究[J].電子技術應用,2018,44(1):125-128.
英文引用格式: Yang Hongchao,Cheng Ruofa,Lv Caiyan,et al. Study on internal parameter identification and output characteristics of photovoltaic module[J]. Application of Electronic Technique,2018,44(1):125-128.

Study on internal parameter identification and output characteristics of photovoltaic module
Yang Hongchao,Cheng Ruofa,Lv Caiyan,Wang Xuewei
School of Information Engineering,Nanchang University of Aeronautics,Nanchang 330063,China
Abstract: The rapid and accurate identification of its internal parameters for the prediction of the output characteristics of photovoltaic arrays, tracking the maximum power point and the characteristics of the battery failure model are very important. However, the accuracy of the algorithm is better than that of the mathematical method, but the existing particle swarm parameter identification method has many problems such as premature and premature number of iterations. In order to solve these problems, an improved quantum particle swarm optimization(PSO) algorithm is proposed to accurately identify the five parameters within the PV module and to predict the external output characteristics. The method is validated by MATLAB simulation and practical test data to prove its accuracy and applicability.
Key words : photovoltaic module;parameters identification;QPSO;output characteristics

0 引言

    近幾年,隨著生態問題的日益突出,不可再生能源的過度使用,對環境造成了不小的影響,比如近幾年我國霧霾尤其嚴重,這就凸顯出清潔可再生能源的重要性了。近年來,光伏產業作為可再生能源工業的代表,在人們生活的各個領域得到快速發展和應用。光伏組件輸出特性由光照強度和外界溫度等要素有關[1]。通常,生產商僅提供光伏組件在標況下的外部輸出特性曲線和對應的電氣銘牌參數。而在實際應用中,光伏組件基本不會在標況下運行,所以獲得光伏組件在不同條件下的外部輸出特性和對應的電氣參數具有實際意義,同時也為光伏組件不同工況下的運行狀況分析提供依據。

    由于光伏組件的輸出特性隨外界環境變化明顯,所以選擇合適的光伏組件模型并對其內部5參數進行準確辨識便成為需要解決的問題[2]。選擇典型的單二極管模型,并且該模型在工程應用中也具有高精度[3]。對于參數辨識的方法主要分為近似的數學解析法和基于優化算法的參數辨識方法。文獻[4-5]采用近似的數學解析算法,對于參數近似的數學解析算法中,由于存在復雜的超越非線性函數,且有些參數直接近似取固定值,使得計算出的參數準確度大大降低;文獻[6]采用CPSO算法,雖然收斂精度達到了,但迭代次數多。總之,基于智能優化算法的參數識別方法在準確度和可靠性方面具有明顯優勢,但大部分傳統的優化算法還是存在著易陷入早熟或迭代尋優次數過多等問題。所以在此基礎上提出了改進量子粒子群算法對光伏組件內部參數進行辨識,既解決了PSO算法陷入局部最優的問題,又解決了尋優過程中迭代次數過多問題。此外,光伏組件外部輸出特性和內部五參數隨外界環境變化呈現復雜的非線性關系,因此如何準確地預測出不同工況下的輸出特性曲線和對應的內部參數意義重大。

1 光伏電池理論模型和目標函數

1.1 光伏電池理論模型

    光伏電池是利用光生電效應把太陽能轉變為電能的裝置,其單二極管模型如圖1所示[7]

jsj5-t1.gif

    由圖1得出光伏組件內部參數等效電流和電壓表達式:

    jsj5-gs1.gif

式中,U為負載兩端電壓,I為通過負載的電流,Iph為光生電流,Io為二極管反向飽和電流,A為二極管影響因子,Rs為電池串聯電阻,Rsh為電池并聯電阻,T為電池的絕對溫度,K為玻爾茲曼常數(1.38×10-23 J/K),q為電荷常數(1.6×10-19 C)。其中Iph、Io、A、Rs、Rsh為待辨識參數。

1.2 目標函數的建立

    基于上述光伏組件的理論模型特點,將改進量子粒子群算法引入其中,從而準確提取該模型中的未知5參數的值。文獻[8]引用Lambert W函數簡化光伏電池電流I的顯式表達式:

jsj5-gs2-3.gif

其中X=(Iph,Io,A,Rs,Rsh)為每個粒子的位置向量,代表5個電池模型的參數值。Ical和Imea分別為算法辨識的參數帶入式(2)中所得到的辨識電流值和實際的電流值。適應度值越小,表示辨識參數越準確。

2 算法介紹

2.1 量子粒子群

    2004年,sun等人提出量子粒子群算法(QPSO),QPSO是從量子力學的角度提出的量子空間中的粒子滿足聚集的性質。粒子的聚集由顆粒運動的中心的束縛狀態描述,粒子運動的中心是存在于粒子中的一種吸引力。處于束縛狀態的粒子可以以一定的概率密度出現在量子空間中的任何點。粒子的迭代過程在文獻[9]中詳細描述。

2.2 改進量子粒子群算法

    由于在QPSO算法中的種群初始化是采用隨機分布的[10],所以種群初始化存在一定的局限性,無法遍歷整個區域。從而提出對其種群進行混沌初始化,以提高粒子初始化遍歷范圍,同時在尋優過程中對局部最優解進行混沌化處理,以防止陷入局部最優解。混沌學由E.N.洛倫茲提出,由于混沌狀態與一般的無規則狀態不同,其主要特征有規律性、隨機性和遍歷性,所以混沌理論已經成為一個新的和潛在的優化工具。由于混沌序列具有上述優點,因此利用混沌序列用于初始化粒子,可以提高粒子初始化的遍歷性,從而為尋優精度和收斂速度奠定基礎。Logistic混沌方程[11]如式(4)所示:

    jsj5-gs4.gif

式中,0≤Z0≤1,Zi為第i個變化量,μ為控制系數。

3 基于參數辨識的光伏組件輸出特性預測實驗

3.1 仿真實驗驗證算例

    根據光伏組件5參數特性,在MATLAB/Simulink中建立光伏組件仿真模型[11],得出相應的參數辨識數據。模型中光伏組件標況下的電氣參數為Im=4.95 A,Vm=35.2 V,Voc=44.2 V,Isc=5.2 A;為了驗證上述參數辨識方法的精確性和快速性,對仿真模型在標況下的一組數據,采用PSO、QPSO、CQPSO和CPSO 4種方法分別進行辨識并做對比試驗,試驗都迭代100次,由于適應度函數值大小直接可以反映出參數辨識的精度,圖2為不同方法迭代后的適應度值變化圖,表1為不同算法辨識出的光伏組件參數值。結合表1和圖2的相關數據和圖像顯示可得出,CQPSO算法適應度值為0.037 014,相比于PSO的0.542 4,收斂精度要高許多,且迭代次數只需要18次便收斂了,相比于QPSO都迭代33次和文獻[8]中的CPSO迭代68次要快速許多,所以改進量子粒子群既避免陷入局部最優,提高了收斂精度,又加快了收斂的速度,說明此算法可以準確地對光伏組件內部參數進行辨識,且優化了其他算法易陷入局部最優和迭代次數過多的問題。

jsj5-t2.gif

jsj5-b1.gif

    在此基礎上,為了進一步說明參數辨識對輸出特性預測的準確性,本文分別運用了在仿真模型條件下通過改變溫度和光強的3種不同工況下給定的50個數據點,并將其帶入改進的量子粒子群算法中進行模型參數辨識,得出的參數結果如表2。同時用算法辨識結果擬合出對應不同工況下的輸出特性I-U曲線,如圖3。

jsj5-b2.gif

jsj5-t3.gif

    通過圖3的比較可以看出,辨識出的參數值與給定值誤差較小,辨識出光伏組件功率曲線與設定值曲線重合度較高,說明此算法對于不同工況下的參數辨識都有較高的準確性。為了驗證對輸出特性預測精度,本文引進了預測電流百分誤差函數PE,如式(5)所示,對輸出特性中具有代表性的最大功率點電流Imp準確性進行比較,如表3。表中誤差率絕對值均小于0.5%,說明此方法對仿真模型輸出特性預測是非常有效且適用的。

jsj5-b3.gif

    jsj5-gs5.gif

3.2 實測數據實驗驗證算例

    為了驗證此預測模型在實際環境下的預測效果,本文在輻照度為260 W/m2、光伏電池板溫度為37 ℃(310K)的工況下,用算法進行參數辨識和輸出特性預測精度的驗證。在該工況下選取45個數據值進行辨識,通過傳統數學解析算法和本文改進兩種算法分別辨識出內部參數值,如表4所示。把表4中不同算法對應的辨識參數代入式(2)原方程中擬合出3種算法對應的實測數據輸出特性曲線,如圖4所示。把圖4中擬合的3個電流值帶入到式(5)的電流百分比誤差函數中,得到圖5中3種算法的預測電流誤差百分比。

jsj5-b4.gif

jsj5-t4.gif

jsj5-t5.gif

    從表4中適應度值可得出,改進算法在實測數據條件下依然能得到高精度的辨識參數值,證明此算法在參數辨識上的準確性和可適用性。從圖4中兩種方法擬合出的輸出特性曲線可看出不同算法辨識曲線差距很大,而本文算法使實際測量值和擬合曲線基本重合,擬合程度較高說明對電流預測的準確性。圖5中預測電流誤差百分比可看本文算法電流誤差率幾乎為0,也說明此方法對輸出特性預測具有較高的準確性,從而充分驗證在實測條件下對光伏組件輸出特性預測的精確度。

    綜上所述,算例中分別采用不同算法對仿真模型下的光伏組件進行內部參數辨識,比較得出本文算法的準確性和快速性。并通過此算法準確地對不同工況下的光伏組件輸出特性進行預測,再通過本文算法與傳統的迭代算法在實測光伏組件數據下進行辨識并對輸出特性進行預測,實驗結果均表明算法對參數辨識的準確性以及輸出特性預測的正確性和有效性。

4 結論

    本文通過改進算法對光伏組件內部參數進行了準確辨識,將光伏組件仿真模型和實際環境下的實測數據進行了參數辨識和輸出特性的預測實驗。在仿真試驗中,首先通過3種粒子群算法對標況下光伏組件5參數進行辨識,得出改進量子粒子群算法收斂速度快且精度高,同時避免陷入局部最優,說明此方法在仿真模型下的參數辨識有效性和準確性;再通過改進量子粒子群算法對不同溫度和光強下光伏組件進行參數辨識,通過辨識結果擬合出對應的輸出特性曲線,并計算出電流誤差百分比,從而驗證及說明了此方法對仿真模型下輸出特性預測的準確性。為了進一步驗證此方法對參數辨識的準確性和對輸出特性預測的有限性,本文采用了具有一般性的工況(S=260 W/m2,T=37 ℃)下的實測數據對此方法的準確性進行驗證,驗證結果表明此方法具有一般工程適用性,且準確度較高。本文對光伏組件參數辨識及輸出特性預測具有廣泛適用性,可為光伏組件中最大功率點跟蹤(MPPT)、故障診斷等問題研究提供支持,具有較高的工程使用價值和推廣意義。

參考文獻

[1] 陳煒,艾欣,吳濤,等.光伏并網發電系統對電網的影響研究綜述[J].電力自動化設備,2013,33(2):26-32.

[2] 傅望,周林,郭珂,等.光伏電池工程用數學模型研究[J].電工技術學報,2011,26(10):211-216.

[3] 田琦,趙爭鳴,韓曉艷.光伏電池模型的參數靈敏度分析和參數提取方法[J].電力自動化設備,2013,33(5):119-124.

[4] 周建良,王冰,張一鳴,等.基于實測數據的光伏陣列參數辨識與輸出功率預測[J].可再生能源,2012,30(7):1-4.

[5] 周勇,阮毅,趙春江,等.基于系統記錄數據的光伏陣列參數辨識與功率預測研究[J].可再生能源,2015,33(2):177-183.

[6] Cheng Ze,Dong Mengnan,Yang Tiankai,et al.Extraction of solar  cell  model  parameters  based  on  self-adaptive chaos  particle  swarm  optimization  algorithm[J].Transactions of China Electrotechnical Society,2014,29(9):245-252.

[7] GREEN M A.Photovoltaic principles[J].Physica E:Low-dimensional Systems and Nanostructures,2002,14 (1):11-17.

[8] 程澤,董夢男,楊添剴,等.基于自適應混沌粒子群算法的光伏電池模型參數辨識[J].電工技術學報,2014,29(9):245-252.

[9] 李曉.基于粒子群算法和量子粒子群算法的電力系統故障診斷[D].長沙:湖南大學,2010.

[10] 王振樹,卞紹潤,劉曉宇,等.基于混沌與量子粒子群算法相結合的負荷模型參數辨識研究[J].電工技術學報,2014,39(4):1504-1514.

[11] 趙樂,張彥曉.基于Simulink光伏電池建模及其輸出特性仿真研究[J].現代電子技術,2014,33(11):125-128.

此內容為AET網站原創,未經授權禁止轉載。
亚洲一区二区欧美_亚洲丝袜一区_99re亚洲国产精品_日韩亚洲一区二区
国产精品久久午夜| 亚洲高清久久久| 美女国内精品自产拍在线播放| 亚洲天堂av高清| 亚洲蜜桃精久久久久久久| 欧美在线观看视频| 亚洲欧美国产精品桃花| 亚洲视频1区2区| 中文一区字幕| 一区二区三区精品| 日韩视频专区| 亚洲精品一区二区三区99| 亚洲欧洲在线视频| 亚洲精品美女在线观看| 亚洲欧洲精品一区二区三区波多野1战4 | 午夜精品视频网站| 亚洲欧美国产视频| 亚洲欧美日韩综合| 欧美一区二区三区四区视频| 午夜日韩av| 久久国产免费| 久久精品中文字幕一区| 卡通动漫国产精品| 欧美岛国在线观看| 欧美日韩精品久久久| 欧美日韩亚洲综合| 国产精品mm| 国产伦精品一区二区三区免费迷| 国产区精品在线观看| 国产午夜精品全部视频在线播放| 国产一区在线看| 亚洲电影下载| 妖精成人www高清在线观看| 亚洲一卡久久| 欧美在线1区| 亚洲欧洲中文日韩久久av乱码| 99视频超级精品| 亚洲女同在线| 久久久久久久97| 免费亚洲电影| 欧美色视频在线| 国产欧美午夜| 亚洲第一页中文字幕| 9色精品在线| 欧美一区网站| 日韩视频在线免费观看| 亚洲欧美一区二区原创| 久久久久久尹人网香蕉| 欧美国产精品va在线观看| 欧美日韩在线不卡| 国产日韩欧美中文| 亚洲人被黑人高潮完整版| 在线一区二区日韩| 欧美一区二区私人影院日本| 亚洲人成在线观看网站高清| 亚洲视频大全| 久久人体大胆视频| 欧美日韩精品一区二区天天拍小说 | 国产精品欧美激情| 激情成人av在线| 日韩视频精品在线| 欧美在线精品一区| 一区二区三区视频在线播放| 久久久久国产成人精品亚洲午夜| 欧美激情久久久久| 国产日韩三区| 亚洲欧洲综合另类| 欧美一区二区三区四区高清| 一区二区三区福利| 久久婷婷综合激情| 欧美亚洲成人网| 亚洲第一网站免费视频| 亚洲欧美中文日韩v在线观看| 亚洲精品护士| 久久国产加勒比精品无码| 欧美日韩免费观看一区二区三区 | 日韩午夜在线播放| 欧美在线视频导航| 亚洲一区二区三区四区视频| 免费中文字幕日韩欧美| 国产欧美一区二区精品仙草咪| 亚洲精品国精品久久99热一| 欧美在线影院在线视频| 亚洲在线不卡| 欧美精品在线播放| 影音欧美亚洲| 欧美亚洲网站| 亚洲欧美视频一区二区三区| 欧美电影在线免费观看网站| 国产一区二区黄色| 亚洲综合好骚| 亚洲一本大道在线| 欧美久久久久久久| 亚洲国产精品va在看黑人| 欧美一区二区视频观看视频| 午夜精品剧场| 欧美午夜精品久久久久久浪潮| 在线免费高清一区二区三区| 欧美在线播放| 欧美在线三级| 国产精品日韩高清| 一片黄亚洲嫩模| 一区二区三区四区国产精品| 欧美国产日韩视频| 在线观看成人小视频| 久久精品二区亚洲w码| 欧美在线观看一二区| 国产精品日日摸夜夜添夜夜av | 亚洲欧美日韩区| 欧美体内she精视频| 亚洲精品一区二区三区99| 亚洲欧洲日本在线| 久久综合网hezyo| 精品9999| 亚洲激情在线视频| 欧美sm视频| 亚洲高清av| 亚洲美女尤物影院| 欧美成人免费全部观看天天性色| 伊人影院久久| 亚洲精品社区| 欧美精品在线一区| 亚洲精品美女在线| 一区二区三区四区国产精品| 欧美三级电影网| 日韩一区二区精品在线观看| 在线亚洲伦理| 国产精品久久二区二区| 亚洲午夜国产成人av电影男同| 亚洲一区在线免费观看| 国产精品久久久久9999| 亚洲欧美日韩高清| 久久精品免费| 激情久久久久久久久久久久久久久久 | 免费不卡在线观看| 亚洲激情视频在线播放| 99re6这里只有精品视频在线观看| 欧美福利电影网| 日韩视频三区| 亚洲欧美不卡| 国产视频久久久久久久| 久久成人精品电影| 欧美成人精品高清在线播放| 91久久香蕉国产日韩欧美9色| 一区二区三区精品| 国产精品视频免费| 久久国产精品99久久久久久老狼| 另类欧美日韩国产在线| 亚洲欧洲一区二区三区在线观看 | 亚洲欧美日韩国产精品 | 99精品视频免费全部在线| 亚洲欧美一区二区视频| 国产中文一区二区| 日韩午夜一区| 国产精品日韩在线| 久久精品亚洲乱码伦伦中文| 欧美精品一区二区三区久久久竹菊 | 亚洲欧美制服中文字幕| 国产日韩在线播放| 亚洲人www| 国产精品国产三级国产普通话蜜臀| 欧美亚洲一区二区在线| 欧美成人激情视频免费观看| 一本色道久久加勒比精品| 久久久久国内| 亚洲日本中文字幕| 欧美在线一区二区| 亚洲日本无吗高清不卡| 午夜在线成人av| 亚洲国产视频一区| 翔田千里一区二区| 伊人精品成人久久综合软件| 亚洲一区二区三区四区在线观看| 国产在线日韩| 亚洲先锋成人| 伊人久久大香线蕉综合热线 | 在线日韩欧美| 欧美一区二区视频免费观看| 亚洲欧洲偷拍精品| 久久久99国产精品免费| 99精品欧美| 另类av一区二区| 亚洲一区制服诱惑| 欧美精品国产精品| 欧美伊人久久久久久久久影院 | 香蕉成人啪国产精品视频综合网| 精久久久久久| 亚洲欧美综合| 亚洲人成精品久久久久| 久久久国产精品一区二区中文| 亚洲免费观看高清在线观看| 久久亚洲春色中文字幕| 亚洲网站视频| 欧美激情一区二区三区在线视频观看| 亚洲欧美日韩国产综合| 欧美视频福利| 日韩视频专区| 在线欧美日韩国产| 久久久久国色av免费看影院 | 一本在线高清不卡dvd|