《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 無需其它器件的低噪聲自調(diào)零放大器
無需其它器件的低噪聲自調(diào)零放大器
摘要: Analog Devices AD8553自調(diào)零儀表放大器具有獨特架構(gòu),其兩個增益設(shè)置電阻沒有公共結(jié)點。IC的前端是一個精密電壓電流轉(zhuǎn)換器,其中一個增益設(shè)置電阻R1設(shè)置跨導(dǎo)的大小。
Abstract:
Key words :

  Analog Devices AD8553儀表放大器的獨特架構(gòu)降低并聯(lián)設(shè)備噪聲。

  Analog Devices AD8553自調(diào)零儀表放大器具有獨特架構(gòu),其兩個增益設(shè)置電阻沒有公共結(jié)點(參考文獻1)。IC的前端是一個精密電壓電流轉(zhuǎn)換器,其中一個增益設(shè)置電阻R1設(shè)置跨導(dǎo)的大小。IC的末端是一個精密電流電壓轉(zhuǎn)換器,它的反饋電阻R2的值,根據(jù)G=2(R2/R1)共同決定全部電壓增益。可以發(fā)現(xiàn),兩個增益設(shè)置電阻是獨立的,輸入端的電壓控制電流源,用減少放大器數(shù)量的方法,滿足嚴(yán)格的低噪聲要求。

  多使用放大器減小噪聲分兩步。首先,假設(shè)放大器的隨機噪聲源相互獨立。進一步,假設(shè)噪聲服從高斯分布。當(dāng)平均經(jīng)典電壓放大器的輸出時,通過使用N個放大器和三倍電阻減少噪聲到1/ (參考文獻2)。AD8553內(nèi)部架構(gòu)對幾乎無限個并聯(lián)IC工作時,僅允許使用N+1個電阻。通過并聯(lián)更多IC各自的輸入引腳,連接內(nèi)部電壓電流源容易并聯(lián)工作(圖1)。微伏級的輸入電壓偏置與若干IC的并聯(lián)輸入引腳配合不當(dāng)是無害的,因為電壓電流轉(zhuǎn)換器的輸出電阻理論上是無窮大的。

電路圖

  并聯(lián)N次輸入端的網(wǎng)絡(luò)結(jié)果是單IC輸出電流的N

 

(VINP–VINN)/(2R1)或N倍。可以僅使用N個IC電流電壓端的一個。端反饋電阻為R2/N,在此,R2為單IC的期望電壓增益AV值。由于放大器噪聲的主要來源為輸入端,假設(shè)N個并聯(lián)電壓電流轉(zhuǎn)換器輸出電流的隨機器件標(biāo)準(zhǔn)差為σNII×公式 ,σI為電壓電流轉(zhuǎn)換器輸出電流的隨機器件標(biāo)準(zhǔn)差。這些結(jié)果與參考文獻2中的不同,文獻中作者通過多電壓平均的方法實現(xiàn)減小噪聲。另一方面,圖1電壓電流轉(zhuǎn)換器的共模輸出中電流的決定成分為單IC的N倍。下面的公式計算RSNR(相對信噪比),定義超過輸出噪聲標(biāo)準(zhǔn)差的輸出電流:RSNRN=(N×I)/(σI×公式)=公式×RSNR1。實際上,意味著電路噪聲減少到單IC的1/ 公式

 

       英文原文:

  Autozeroed amplifier with halved noise needs few components

  The unique architecture of the Analog Devices AD8553 instrumentation amplifier permits paralleling devices to lower noise.

  Marián Štofka, Slovak University of Technology, Bratislava, Slovakia; Edited by Charles H Small and Fran Granville -- EDN, 10/25/2007

  The Analog Devices AD8553 autozeroed instrumentation amplifier has a unique architecture in that its two gain-setting resistors have no common junction (Reference 1). The first stage of the IC is a precise voltage-to-current converter, in which the first gain-setting resistor, R1, sets the magnitude of the transconductance. The end stage of the IC is a precise current-to-voltage converter, in which the value of its feedback resistor, R2, co-determines the overall voltage gain as G="2"(R2/R1). You can exploit the fact that the two gain-setting resistors are separate and that the input stage is a voltage-controlled current source to lower the component count in amplifiers with extreme noise-reduction demands.

  You can use more amplifiers to reduce noise in two ways. First, assume that the sources of random noise in the amplifiers are mutually independent. Further, assume that the noise obeys a gaussian distribution. When averaging the outputs of classic voltage amplifiers, you can reduce the noise to a fraction of 1/ by using N amplifiers and three times as many resistors (Reference 2). The internal structure of the AD8553 allows you to use just N+1 resistors for an almost-unlimited number of ICs operating in parallel. By paralleling the respective input pins of more ICs, the connected internal volta

 

ge-to-current sources easily operate in parallel (Figure 1). The microvolt-range input-voltage-offset mismatch at paralleled input pins of several ICs is harmless here because the output resistances of the voltage-to-current converters are theoretically infinite.

 

  The net result of paralleling N input stages is that they output current of N(VINP–VINN)/(2R1), or N times that of a single IC. You use only one of the current-to-voltage stages of the N ICs. That stage’s feedback resistor has the value of R2/N, where R2 is the value for a desired voltage gain of AV in a single IC. Because the primary source of noise in an amplifying IC is its input stage, you can assume that the standard deviation of the random component of output current of the paralleled-N voltage-to-current converters is σNI=σI×, where σI is the standard deviation of the random component of output current of a voltage-to-current converter. These results differ from those in Reference 2, in which the authors perform noise reduction by averaging multiple voltages. On the other hand, the deterministic part of current at the common output of the voltage-to-current converters in Figure 1 has the value of N times that of the single IC. The following equation calculates the RSNR (relative signal-to-noise ratio),
which you define as the output current over the standard deviation of output noise: RSNRN=(N×I)/(σI×)=×RSNR1. It means that, in effect, the noise of the circuit has decreased to a fraction of 1/ compared with that of a single IC.

 

  References

  “AD8553 1.8V to 5V Auto-Zero, In-Amp with Shutdown,” Analog Devices, 2005.

  Štofka, Marián, “Paralleling decreases autozero-amplifier noise by a factor of two,” EDN, June 7, 2007, pg 94. 


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 久久成人福利视频| 伊人久久大线蕉香港三级| 性一交一乱一伧老太| 在线播放黄色片| 佐佐木明希哔哩哔哩| 象人族女人能吃得消吗| 国产真实夫妇交换| 78期马会传真| 在线观看免费视频a| 一级一黄在线观看视频免费| 日本videos18高清hd下| 久久综合狠狠综合久久综合88 | 亚洲国产一区二区三区在线观看| 激情内射人妻1区2区3区| 免费又黄又爽又猛的毛片| 精品综合久久久久久98| 国产一级精品高清一级毛片| 麻豆天美精东果冻星空| 国产欧美日韩在线观看精品| 天堂va在线高清一区| 性欧美大战久久久久久久野外| 久久久久免费精品国产| 日韩乱码人妻无码中文字幕 | 免费国产成人午夜在线观看| 精品无码无人网站免费视频 | 五月天婷五月天| 午夜影放免费观看| 色av.com| 国产乱理伦片a级在线观看| 麻豆精品国产免费观看| 国产欧美另类久久久精品免费| 2020狠狠操| 国产精品高清一区二区三区不卡 | 精品国产青草久久久久福利| 四虎影视8848a四虎在线播放| 被公侵幕岬奈奈美中文字幕| 国产免费拔擦拔擦8x| 韩国三级日本三级美三级| 国产在线高清精品二区 | 性xxxxx大片免费视频| 中文亚洲成a人片在线观看 |