《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 簡述Σ-ΔADC(第二部分):調節器
簡述Σ-ΔADC(第二部分):調節器
摘要: Σ-Δ轉換器使用從調節器得到的許多采樣值產生1bit碼流。Σ-ΔADC以高采樣速率使用輸入信號量化器完成這個任務。像所有的量化器一樣,Σ-ΔADC調節器獲取輸入,產生數字碼流表征輸入電壓。可以觀察時域或頻域的Σ-Δ調節器。如果看時域表現,可以見一階調節器的結構。
Abstract:
Key words :

  Σ-Δ轉換器使用從調節器得到的許多采樣值產生1bit碼流。Σ-ΔADC以高采樣速率使用輸入信號量化器完成這個任務。像所有的量化器一樣,Σ-ΔADC調節器獲取輸入,產生數字碼流表征輸入電壓。可以觀察時域或頻域的Σ-Δ調節器。如果看時域表現,可以見一階調節器的結構(圖1)。

一階調節器的結構

  調節器測量模擬輸入信號和反饋DAC的模擬輸出。隨后一個積分器測量求和節點的模擬電壓輸出,為1位ADC呈現出一個斜坡信號。1位ADC轉換積分器輸出信號為數字一或零。使用系統時鐘,ADC將1位數字信號送到調節器輸出,也通過反饋回輸入,在這里1位DAC為等待。

  1位ADC將信號量化為離散的輸出編碼,帶有轉換器的量化噪聲(ei)。調節器輸出等于輸入信號加上量化噪聲(ei–ei–1)。如這個公式所示,量化噪聲為調節器當前誤差(ei)減去前一個誤差(ei–1)的微分。時域輸出信號為以采樣頻率FS的輸入信號脈沖波形。如果將輸出脈沖序列平均,它等于輸入的信號值。

  頻域圖反映了不同的問題(圖2)。時域輸出脈沖在頻域內表現為輸入信號(或毛刺)和變形的噪聲。圖2的噪聲特性是調節器頻率作用的關鍵。

噪聲特性是調節器頻率作用的關鍵

  不像大

 

多數量化器,Σ-Δ調節器包括形成量化噪聲的積分器。調節器輸出的噪聲頻譜并不平滑。更重要的,在頻率分析中,可以看到積分器怎樣在更高頻率處形成噪聲,便于產生更高分辨率的結果。

 

  圖2中調節器輸出顯示了調節器的量化噪聲在0Hz時開始為低電平,快速上升,然后在調節器采樣頻率為最大值處穩定。

  二階調節器進行兩次積分,而不是僅有一次,是最小化低頻率量化噪聲的一種好方法。大多數Σ-Δ調節器具有更高的階數。例如,更常用的Σ-Δ轉換器的設計包括二、三、四、五或六階調節器。多階調節器在更高頻率形成更大的量化噪聲。

  英文原文:

  Delta-sigma ADCs in a nutshell, part 2: the modulator

  Unlike most quantizers, the delta-sigma modulator includes an integrator that shapes the quantization noise.

  By Bonnie Baker -- EDN, 1/17/2008

  A delta-sigma converter uses many samples from the modulator to produce a stream of 1-bit codes. The delta-sigma ADC accomplishes this task by using an input-signal quantizer running at a high sample rate. Like all quantizers, the delta-sigma modulator takes an input and produces a stream of digital values that represents the voltage of the input. You can look at the delta-sigma modulator in the time or in the frequency domain. If you look at a time-domain representation, you can see the mechanics of a first-order modulator (Figure 1).

  The modulator measures the difference between the analog-input signal and the analog output of a feedback DAC. An integrator then measures the analog-voltage output of the summing junction and presents a sloping signal to the 1-bit ADC. The 1-bit ADC converts the integrator’s output signal to a digital one or zero. Using the system clock, the ADC sends the 1-bit digital signal to the modulator’s output, as well as back through the feedback loop, where a 1-bit DAC is waiting.

  The 1-bit ADC digitizes the signal to a coarse output code that has the quantization noise (ei) of the converter. The modulator output is equal to the input plus the quantization noise, (ei–ei–1). As this formula shows, the quantization noise is the difference of the current error (ei) minus the previous error (ei–1) of the modulator. The time-domain output signal is a pulse-wave representation of the input signal at the sampling frequency, fS. If you average the output-pulse train, it equals t

 

he value of the input signal.

 

  The frequency-domain diagram tells a different story (Figure 2). The time-domain output pulses in the frequency domain appear as the input signal (or spur) and shaped noise. The noise characteristic in Figure 2 is the key to the modulator’s frequency operation.

  Unlike most quantizers, the delta-sigma modulator includes an integrator that shapes the quantization noise. The noise spectrum at the modulator output is not flat. More important, in a frequency analysis, you can see how the modulator shapes the noise to higher frequencies, facilitating the production of a higher resolution result.

  The modulator output in Figure 2 shows that the quantization noise of the modulator starts low at 0 Hz, rises rapidly, and then levels off at a maximum value at the modulator sampling frequency.

  Integrating twice with a second-order modulator, instead of just once, is a great way to minimize low-frequency quantization noise. Most delta-sigma modulators are of a higher order. For instance, the designs of the more popular delta-sigma converters include second-, third-, fourth-, fifth, or sixth-order modulators. Multi-order modulators shape the quantization noise even harder to higher frequencies.

  References

  Baker, Bonnie, “Delta-sigma ADCs in a nutshell,” EDN, Dec 14, 2007, pg 22.

  Baker, RJ, CMOS mixed-signal circuit design, Wiley & Sons, ISBN 0471227544, May 2002.

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 中文字幕日韩欧美一区二区三区| 亚洲码在线中文在线观看| 黑人解禁濑亚美莉| 国产精品色午夜视频免费看| japanese国产在线看| 性高湖久久久久久久久aaaaa| 久久亚洲AV无码精品色午夜麻豆 | 久久水蜜桃亚洲AV无码精品| 欧美中文字幕视频| 亚洲欧美日韩三级| 狠狠色噜噜狠狠狠狠色吗综合| 午夜亚洲国产理论秋霞| 色综合天天综合网国产成人| 国产大片b站免费观看直播| 日本免费人成在线网站| 国产精品毛片完整版视频| 99久久精品美女高潮喷水| 女人18毛片黄| youjizz麻豆| 小婷又紧又深又滑又湿好爽| 中文字幕亚洲乱码熟女一区二区| 日批视频在线看| 久久人人爽爽爽人久久久| 日韩欧美卡一卡二卡新区| 亚洲AV无码潮喷在线观看| 欧美一级在线观看视频| 亚洲伊人久久大香线蕉结合| 欧美性色欧美A在线图片| 亚洲成色在线综合网站| 欧美精品久久天天躁| 亚洲狠狠婷婷综合久久久久| 洗澡与老太风流69小说| 人人添人人澡人人澡人人人爽| 秋霞电影网一区二区三区| 免费视频爱爱太爽了| 精品国产亚洲一区二区三区在线观看| 喷出巨量精子系列在线观看 | 日韩人妻一区二区三区蜜桃视频| 九九热视频精品在线| 日韩视频第一页| 久久精品国产一区二区三区肥胖|