《電子技術應用》
您所在的位置:首頁 > 人工智能 > 設計應用 > 基于多頭注意力的社交網絡用戶身份鏈接方法
基于多頭注意力的社交網絡用戶身份鏈接方法
電子技術應用
臧文羽1,頡夏青2,邱莉榕2,陸月明2
1.網絡空間研究院;2.北郵可信分布式計算與服務教育部重點實驗室
摘要: 隨著社交網絡的快速發展,人們在社交網絡中擁有越來越多的虛擬身份,識別同一自然人不同網絡虛擬身份的網絡用戶身份鏈接問題變得越來越重要。用戶身份鏈接有助于挖掘網絡用戶的隱信息,構建全面的網絡用戶畫像,進而促進跨網絡的推薦、鏈接預測、信息傳播等多個研究領域發展。現有的基于用戶屬性和基于網絡結構的用戶身份鏈接方法,沒有考慮不同用戶之間影響力差異因素,收斂速度較慢。基于深度游走的用戶身份鏈接方法,融入多頭注意力機制,對用戶間影響力進行建模,實驗結果表明,該方法可以很好地改進算法有效性,提高訓練效率。
中圖分類號:TP39 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.245904
中文引用格式: 臧文羽,頡夏青,邱莉榕,等. 基于多頭注意力的社交網絡用戶身份鏈接方法[J]. 電子技術應用,2024,50(12):61-64.
英文引用格式: Zang Wenyu,Xie Xiaqing,Qiu Lirong,et al. Social network user identity linkage method based on multi-head attention[J]. Application of Electronic Technique,2024,50(12):61-64.
Social network user identity linkage method based on multi-head attention
Zang Wenyu1,Xie Xiaqing2,Qiu Lirong2,Lu Yueming2
1.Academy of Cyber; 2.Key Laboratory of Trustworthy Distributed Computing and Service (BUPT), Ministry of Education
Abstract: With the rapid development of social networks, people have various virtual identities in social networks. User identity linkage problem that aims to identify various virtual identities of the same natural person is becoming increasingly important. User identity linkage method can unearth some hidden information and form a complete user profile to promote the development of multiple research fields, such as cross-network recommendation, link prediction, information dissemination, etc. Existing user-profile based model and network-structure based user identity linkage model do not consider the influence difference between different users, and the convergence speed is slow. In order to model the influences between users, multi-head attention mechanism is added to network random-walk based user linkage method in this paper. The experimental results show that it can improve the effectiveness of social network user identity linkage method and improve training efficiency.
Key words : graph embedding;user identity linkage;multi-head attention mechanism

引言

根據中國互聯網信息中心發布的第51次《中國互聯網絡發展狀況統計報告》,我國的在線社交網絡數量已經增長到10.67億,互聯網的普及率也達到了75.6%[1]。社交網絡已經成為人們日常生活中不可或缺的社交工具,抖音、微信、微博、X(Twitter)等社交網絡層出不窮,人們在社交平臺上擁有越來越多的虛擬身份。根據全球網絡指數(Global Web Index,GWI)發布的《2019年社交媒體趨勢報告》[2],平均每個互聯網用戶擁有的社交網絡賬號已經從2015年的約6.2個上升到2019年的近8個。因此,社交網絡的用戶身份鏈接(User Identity Linkage)問題成為近年來的研究熱點,為跨平臺的用戶畫像[3]、虛假身份信息監測[4]、社交網絡朋友推薦[5]、信息傳播[6]、鏈接預測[7]、網絡動力學分析[8]等很多下游任務提供了新的研究思路。

現有的用戶身份鏈接方法仍然存在許多問題,例如僅僅關注社交網絡的社群結構,而忽略了其局部結構、忽視了用戶和鄰居之間相互影響力差異,算法收斂速度慢等。因此,全面分析社交網絡特征結構、提高用戶身份鏈接算法訓練效率仍然是十分重要的課題。


本文詳細內容請下載:

http://www.jysgc.com/resource/share/2000006249


作者信息:

臧文羽1,頡夏青2,邱莉榕2,陸月明2

(1.網絡空間研究院,北京 100041;

2.北郵可信分布式計算與服務教育部重點實驗室,北京 100876)


Magazine.Subscription.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 精品人妻系列无码人妻漫画| 亚洲影视自拍揄拍愉拍| 拍拍拍无挡视频免费观看1000| 亚洲va欧美va天堂v国产综合| 毛片亚洲AV无码精品国产午夜| 公啊灬啊灬啊灬快灬深用| 色综合久久88色综合天天| 国产成人亚洲综合| 五月天亚洲色图| 国产精品成人va在线观看入口| 99久久综合狠狠综合久久aⅴ | 免费观看黄a一级视频日本| 色综合合久久天天给综看| 日韩a级毛片免费观看| 亚洲人xxx日本人18| 精品无人乱码一区二区三区| 国产亚洲成AV人片在线观看导航| 很黄很污的视频在线观看| 国产精品无码免费视频二三区| 91麻豆国产免费观看| 天堂俺去俺来也www久久婷婷| 一级一黄在线观看视频免费| 成在人线AV无码免费高潮喷水| 久久久久久国产精品免费无码 | 日本中文字幕一区二区有码在线| 亚洲av综合av一区| 欧美啪啪动态图| 亚洲国产一区二区a毛片| 欧美日韩乱国产| 亚洲成人黄色在线观看| 欧美激情性xxxxx| 亚洲欧美日韩综合久久久| 波多野吉衣视频| 亚洲网站在线看| 波多野结衣高清一区二区三区| 伊人热热久久原色播放www| 男女高潮又爽又黄又无遮挡| 免费看AV毛片一区二区三区| 精品三级66在线播放| 免费观看国产小粉嫩喷水| 精品亚洲一区二区三区在线播放|