《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 一種新的聯合塊對角化卷積盲分離時域算法
一種新的聯合塊對角化卷積盲分離時域算法
來源:電子技術應用2012年第2期
溫媛媛, 陳 豪
中國空間技術研究院 西安分院, 陜西 西安710000
摘要: 提出一種基于高階累積量聯合塊對角化的時域算法求解卷積混合盲信號分離問題。引入白化處理,將混疊矩陣轉變成酉矩陣,混合信號轉變為互不相關的,進而計算出其對應的一系列高階累積量矩陣,通過最小化代價函數來實現高階累積量矩陣聯合塊對角化的目的,在時域中解決超定卷積盲分離問題。實驗表明,相比于經典的自然梯度算法,所提方法的分離精度更高,且運算速度也更快。
中圖分類號: TN912.3
文獻標識碼: A
文章編號: 0258-7998(2012)02-0101-04
A new joint block diagonalization time-domain algorithm for convolutive blind separation
Wen Yuanyuan, Chen Hao
Xi’an Division of China Academy of Space Technology, Xi’an 710000, China
Abstract: This paper proposes a new time-domain joint block diagonalization algorithm based on the high-order cumulant for the blind source separation of convolutive mixtures. This paper adopts the whitening procedure to transform the mixing matrix into an unitary matrix. Computing the high-order cumulant matrixes of the mixing signals whitened, which can be transformed into block diagonal matrixes through minimizing the cost function. Simulations results illustrate that, the new method outperforms the classic natural gradient method in separation precision and operation speed, and can be efficiently applied to the blind source separation of convolutive mixtures.
Key words : blind source separation; convolutive mixtures; high-order cumulant; joint block diagonalization

    近年,盲信號分離BSS(Blind Source Separation)的研究已經成為信號處理領域的一個研究熱點,涌現出許多盲分離的算法。盲信號分離是在源信號和傳輸信道參數未知的情況下,僅根據源信號的統計特性,從觀測信號中分離源信號的過程[1]。盲信號分離所研究的混疊模型主要分為瞬時混疊和卷積混疊兩類。瞬時盲分離已經得到廣泛而成熟的研究,聯合塊(JBD)對角化是解決瞬時盲分離的有效方法[2-4]。然而,傳感器接收到的信號通常是源信號與多徑傳輸信道的卷積混疊信號,這使得卷積盲分離受到越來越多的關注[5-7]。

    與瞬時混疊模型相比,卷積混疊信號模型及其求解更為復雜。在現有方法中,基于高階統計量的時域算法[8-9]是解卷積混疊盲信號分離問題的一類直觀且有效的方法。作為時域算法,它不需要解決頻域算法[10-11]中所固有的又不得不解決的尺度模糊和排列模糊問題;同時,對一組高階累積量矩陣同時進行JBD又可以有效地抑制高斯噪聲的影響。鑒于這兩點,本文提出一種基于高階累積量的JBD時域算法,來解決卷積混疊盲信號分離問題。
1 問題描述
    盲信號分離的目的是把通過一未知混合系統后的觀測信號分離開來。在卷積混合情況下,假設源信號通過一個線性有限脈沖響應FIR濾波器,也就是說觀測信號是由它們的延遲所組成的線性組合,即:
 



    用參考文獻[14]中所提到的自然梯度算法來分離卷積混合的源信號,最后分離出來的信號波形如圖3所示。
    從兩種算法分離出的信號波形圖中很難明顯看出其性能的差別,下面通過兩個性能指標來客觀地分析一

陣。在此基礎上通過使代價函數最小化的方法來使累積量矩陣成為塊對角矩陣,進而實現盲分離。計算機仿真結果表明,本文算法與自然梯度算法相比有分離精度高及分離速度快的特點。

參考文獻
[1] HAYKIN S. Unsupervised adaptive filtering, vol I: Blind  source separation[M]. New York: Wiley Press, 2000:21-23.
[2] SIDIROPOULOS N D, BRO R, GIANNAKIS G B. Parallel  factor analysis in sensor array processing[J]. IEEE Trans Signal Process, 2000,48(8):2377-2388.
[3] VANDER V A J. Joint diagonalization via subspace fitting  techniques[A].In Proc.ICASSP’01[C]. Piscataway,NJ:IEEE  Press, 2001:2773-2776.
[4] ARIE Y. Non-orthogonal joint diagonalization in the leastsquares sensewith application in blind source[J]. IEEE Trans Signal Process, 2002, 50(7):1545-1553.
[5] ABED-MERIAM K, BELOUCHRANI A. Algorithms for joint block diagonaliztion[A]. In Proc. EUSIPCO’04[C]. Vienna:EURASIP Press,2004:209-212.
[6] FEVOTTE C, THEIS F J. Orthonormal approximate joint block diagonalization[R].Technical Report GET/Télécom Pairs, 2007D007, 2007.
[7] 胡可,汪增福.一種基于時頻分析的語音卷積信號盲分離算法[J].電子學報,2006,34(7):1246-1254.
[8] BUCHNER H, AICHNER R, KELLERMANN W. A generalization of blind source separation algorithms for convolutive mixtures based on second-order statistics[J]. IEEE Transactions on Speech and Audio Processing, 2005,13(1):120-134.
[9] GHENNIOUI H, FADAILI E M, MOREAU N T, et al. A nonunitary joint block diagonalization algorithm for blind  separation of convolutive mixtures of sources[J]. IEEE Signal Processing Letters, 2007,14(11): 860-863.
[10] SAWADA H, MUKAI R, ARAKI S, et al. A robust and precise method for solving the permutation problem of frequency-domain blind source separation[J]. IEEE Transactions on Speech and Audio Processing, 2004,12(5): 530-538.
[11] HE Z S, XIE S L, DING S X, et al. Convolutive blind source separation in the frequency domain based on sparse  representation[J]. IEEE Transactions on Audio, Speech,  and Language Processing, 2007,15(5):1551-1563.
[12] GOROKHOV A, LOUBATON P. Subspace based techniques for second order blind separation of convolutive mixtures with temporally correlated sources [J]. IEEE Trans.Circuit Syst., 1997,44(9):813-820.
[13] BOUSBIAH-SALAH H, BELOUCHRANI A,ABED-MERAM  K. Jacobi-like algorithm for blind signal separation of convolutive mixtures[J]. Electron. Lett.,2001(37):1049-1050.
[14] AMARI S, DOUGLAS S, CICHOCKI A,et al. Multichannel blind deconvolution and equalization using the natural gradient[J]. In Proc. 1st IEEE Workshop Signal Processing Advanced Wireless Commun., Paris, France, 1997(4):101-104.

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 麻豆回家视频区一区二| h在线观看免费| 欧美三级黄色大片| 亚洲综合天堂网| 精品久久久久久无码免费| 国产va免费精品高清在线| 黄色网站免费在线观看| 国产精品欧美一区二区三区| a一级日本特黄aaa大片| 性欧美69式xxxxx| 久久久久无码精品国产| 日韩精品一区在线| 亚洲一区二区三区在线观看网站| 正在播放高级会所丰满女技师| 免费人成黄页在线观看视频国产| 美女尿口免费影视app| 国产中年熟女高潮大集合| 麻豆精品国产免费观看| 国产激情一区二区三区| 综合激情网五月| 国产高清美女一级毛片图片| avtt亚洲天堂| 天天天天天天操| gogo全球高清大胆亚洲| 好男人官网资源在线观看| 一边摸一边叫床一边爽| 无码精品人妻一区二区三区av| 久久久精品中文字幕麻豆发布| 都市激情第一页| 国产成人精品高清在线观看99| porn在线精品视频| 国产精品免费av片在线观看| 91av手机在线观看| 国产高清一区二区三区视频| 99久re热视频这里只有精品6| 在线视频网址免费播放| aaaaaa级特色特黄的毛片| 天堂资源在线中文| 99香蕉国产精品偷在线观看 | 人碰人碰人成人免费视频| 男女边摸边吃奶边做免费观看|